Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Pathogens ; 13(4)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38668235

ABSTRACT

This study describes clinical manifestations of highly pathogenic avian influenza (HPAI) H5N1, H5N8 and H5N6 outbreaks between 2014 and 2018 and 2020 and 2022 in the Netherlands for different poultry types and age groups. Adult duck (breeder) farms and juvenile chicken (broiler and laying pullet) farms were not diagnosed before 2020. Outbreaks in ducks decreased in 2020-2022 vs. 2014-2018, but increased for meat-type poultry. Neurological, locomotor and reproductive tract signs were often observed in ducks, whereas laying- and meat-type poultry more often showed mucosal membrane and skin signs, including cyanosis and hemorrhagic conjunctiva. Juveniles (chickens and ducks) showed neurological and locomotor signs more often than adults. Diarrhea occurred more often in adult chickens and juvenile ducks. Mortality increased exponentially within four days before notification in chickens and ducks, with a more fluctuating trend in ducks and meat-type poultry than in layers. For ducks, a mortality ratio (MR) > 3, compared to the average mortality of the previous week, was reached less often than in chickens. A lower percentage of laying flocks with MR > 3 was found for 2020-2022 vs. 2014-2018, but without significant differences in clinical signs. This study provides a basis for improvements in mortality- and clinical-sign-based early warning criteria, especially for juvenile chickens and ducks.

2.
Prev Vet Med ; 225: 106156, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38402649

ABSTRACT

The transmission rate per hour between hosts is a key parameter for simulating transmission dynamics of antibiotic-resistant bacteria, and might differ for antibiotic resistance genes, animal species, and antibiotic usage. We conducted a Bayesian meta-analysis of resistant Escherichia coli (E. coli) transmission in broilers and piglets to obtain insight in factors determining the transmission rate, infectious period, and reproduction ratio. We included blaCTX-M-1, blaCTX-M-2, blaOXA-162, catA1, mcr-1, and fluoroquinolone resistant E. coli. The Maximum a Posteriori (MAP) transmission rate in broilers without antibiotic treatment ranged from 0.4∙10-3 to 2.5∙10-3 depending on type of broiler (SPF vs conventional) and inoculation strains. For piglets, the MAP in groups without antibiotic treatment were between 0.7∙10-3 and 0.8∙10-3, increasing to 0.9∙10-3 in the group with antibiotic treatment. In groups without antibiotic treatment, the transmission rate of resistant E. coli in broilers was almost twice the transmission rate in piglets. Amoxicillin increased the transmission rate of E. coli carrying blaCTX-M-2 by three-fold. The MAP infectious period of resistant E. coli in piglets with and without antibiotics is between 971 and 1065 hours (40 - 43 days). The MAP infectious period of resistant E. coli in broiler without antibiotics is between 475 and 2306 hours (20 - 96 days). The MAP infectious period of resistant E. coli in broiler with antibiotics is between 2702 and 3462 hours (113 - 144 days) which means a lifelong colonization. The MAP basic reproduction ratio in piglets of infection with resistant E. coli when using antibiotics is 27.70, which is higher than MAP in piglets without antibiotics between 15.65 and 18.19. The MAP basic reproduction ratio in broilers ranges between 3.46 and 92.38. We consider three possible explanations for our finding that in the absence of antibiotics the transmission rate is higher among broilers than among piglets: i) due to the gut microbiome of animals, ii) fitness costs of bacteria, and iii) differences in experimental set-up between the studies. Regarding infectious period and reproduction ratio, the effect of the resistance gene, antibiotic treatment, and animal species are inconclusive due to limited data.


Subject(s)
Escherichia coli Infections , Swine Diseases , Animals , Swine , Escherichia coli/genetics , Anti-Bacterial Agents/pharmacology , Escherichia coli Infections/drug therapy , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology , Chickens , Bayes Theorem , beta-Lactamases/genetics , Swine Diseases/drug therapy
3.
Prev Vet Med ; 219: 105998, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37647719

ABSTRACT

The emergence of carbapenemase-producing Enterobacteriaceae (CPE) is a threat to public health, because of their resistance to clinically important carbapenem antibiotics. The emergence of CPE in meat-producing animals is particularly worrying because consumption of meat contaminated with resistant bacteria comparable to CPE, such as extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae, contributed to colonization in humans worldwide. Currently, no data on the transmission of CPE in livestock is available. We performed a transmission experiment to quantify the transmission of CPE between broilers to fill this knowledge gap and to compare the transmission rates of CPE and other antibiotic-resistant E. coli. A total of 180 Ross 308 broiler chickens were distributed over 12 pens on the day of hatch (day 0). On day 5, half of the 10 remaining chickens in each pen were orally inoculated with 5·102 colony-forming units of CPE, ESBL, or chloramphenicol-resistant E. coli (catA1). To evaluate the effect of antibiotic treatment, amoxicillin was given twice daily in drinking water in 6 of the 12 pens from days 2-6. Cloacal swabs of all animals were taken to determine the number of infectious broilers. We used a Bayesian hierarchical model to quantify the transmission of the E. coli strains. E. coli can survive in the environment and serve as a reservoir. Therefore, the susceptible-infectious transmission model was adapted to account for the transmission of resistant bacteria from the environment. In addition, the caecal microbiome was analyzed on day 5 and at the end of the experiment on day 14 to assess the relationship between the caecal microbiome and the transmission rates. The transmission rates of CPE were 52 - 68 per cent lower compared to ESBL and catA1, but it is not clear if these differences were caused by differences between the resistance genes or by other differences between the E. coli strains. Differences between the groups in transmission rates and microbiome diversity did not correspond to each other, indicating that differences in transmission rates were probably not caused by major differences in the community structure in the caecal microbiome. Amoxicillin treatment from day 2-6 increased the transmission rate more than three-fold in all inoculums. It also increased alpha-diversity compared to untreated animals on day 5, but not on day 14, suggesting only a temporary effect. Future research could incorporate more complex transmission models with different species of resistant bacteria into the Bayesian hierarchical model.

4.
Viruses ; 14(8)2022 08 11.
Article in English | MEDLINE | ID: mdl-36016375

ABSTRACT

SARS-CoV-2 outbreaks on 69 Dutch mink farms in 2020 were studied to identify risk factors for virus introduction and transmission and to improve surveillance and containment measures. Clinical signs, laboratory test results, and epidemiological aspects were investigated, such as the date and reason of suspicion, housing, farm size and distances, human contact structure, biosecurity measures, and presence of wildlife, pets, pests, and manure management. On seven farms, extensive random sampling was performed, and age, coat color, sex, and clinical signs were recorded. Mild to severe respiratory signs and general diseases such as apathy, reduced feed intake, and increased mortality were detected on 62/69 farms. Throat swabs were more likely to result in virus detection than rectal swabs. Clinical signs differed between virus clusters and were more severe for dark-colored mink, males, and animals infected later during the year. Geographical clustering was found for one virus cluster. Shared personnel could explain some cases, but other transmission routes explaining farm-to-farm spread were not elucidated. An early warning surveillance system, strict biosecurity measures, and a (temporary) ban on mink farming and vaccinating animals and humans can contribute to reducing the risks of the virus spreading and acquisition of potential mutations relevant to human and animal health.


Subject(s)
COVID-19 , Farms , Mink , SARS-CoV-2 , Animals , COVID-19/epidemiology , COVID-19/veterinary , Female , Male , Mink/virology , Netherlands/epidemiology , Risk Factors , SARS-CoV-2/isolation & purification
5.
FEMS Microbiol Ecol ; 98(9)2022 08 29.
Article in English | MEDLINE | ID: mdl-35878411

ABSTRACT

There is great interest in identifying gut microbiota development patterns and underlying assembly rules that can inform strategies to improve broiler health and performance. Microbiota stratification using community types helps to simplify complex and dynamic ecosystem principles of the intestinal microbiota. This study aimed to identify community types to increase insight in intestinal microbiota variation between broilers and to identify factors that explain this variation. A total of 10 well-performing poultry flocks on four farms were followed. From each flock, the cecal content of nine broilers was collected at 7, 14, and 35 days posthatch. A total of two robust community types were observed using different clustering methods, one of which was dominated by 7-day-old broilers, and one by 35-day-old broilers. Broilers, 14-day-old, were divided across both community types. This is the first study that showed conserved cecal microbiota development trajectories in commercial broiler flocks. In addition to the temporal development with age, the cecal microbiota variation between broilers was explained by the flock, body weight, and the different feed components. Our data support a conserved development of cecal microbiota, despite strong influence of environmental factors. Further investigation of mechanisms underlying microbiota development and function is required to facilitate intestinal health promoting management, diagnostics, and nutritional interventions.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Animal Feed/analysis , Animals , Cecum , Chickens , Diet/veterinary
6.
Pathogens ; 11(5)2022 May 06.
Article in English | MEDLINE | ID: mdl-35631070

ABSTRACT

Highly pathogenic avian influenza viruses' (HPAIVs) transmission from wild birds to poultry occurs globally, threatening animal and public health. To predict the HPAI outbreak risk in relation to wild bird densities and land cover variables, we performed a case-control study of 26 HPAI outbreaks (cases) on Dutch poultry farms, each matched with four comparable controls. We trained machine learning classifiers to predict outbreak risk with predictors analyzed at different spatial scales. Of the 20 best explaining predictors, 17 consisted of densities of water-associated bird species, 2 of birds of prey, and 1 represented the surrounding landscape, i.e., agricultural cover. The spatial distribution of mallard (Anas platyrhynchos) contributed most to risk prediction, followed by mute swan (Cygnus olor), common kestrel (Falco tinnunculus) and brant goose (Branta bernicla). The model successfully distinguished cases from controls, with an area under the receiver operating characteristic curve of 0.92, indicating accurate prediction of HPAI outbreak risk despite the limited numbers of cases. Different classification algorithms led to similar predictions, demonstrating robustness of the risk maps. These analyses and risk maps facilitate insights into the role of wild bird species and support prioritization of areas for surveillance, biosecurity measures and establishments of new poultry farms to reduce HPAI outbreak risks.

7.
Vet Res ; 53(1): 9, 2022 Feb 04.
Article in English | MEDLINE | ID: mdl-35120583

ABSTRACT

The zoonotic pathogen Salmonella enterica serotype Enteritidis (SE) causes severe disease in young chickens. Restriction on antibiotic use requires alternative SE control strategies such as nutritional solutions to improve the resistance of chickens. In this study, chickens were fed long-chain glucomannan (GM) or standard diet and challenged with SE at seven days of age. During 21 days post-infection (dpi), we determined numbers and responsiveness of natural killer (NK) and T cells in ileum and spleen, and SE-specific antibody titers in serum. Microbiota compositions in ileum and caeca were determined, as well as correlations of these with numbers and function of immune cells. Some of the samples in the control group had numerically higher CFUs than the GM-treated group. In addition, the relative abundance of SE based on DNA assessment was significantly lower at 21 dpi upon GM supplementation. At 3 dpi, numbers of intraepithelial NK cells were significantly higher, while activation of intraepithelial NK cells (7 dpi), numbers of intraepithelial cytotoxic CD8+ T cells (14 dpi) and SE-specific antibodies (14 dpi) were numerically higher. Furthermore, relative abundance of the commensal lactic acid bacteria (LAB) significantly increased with GM supplementation post-infection. Higher relative abundance of streptococci was associated with reduced SE in ileal and caecal contents at 21 dpi. Relative abundance of streptococci negatively correlated with SE counts and positively correlated with NK cell activation and SE-specific antibodies, which suggests involvement of the commensal LAB in NK cell responsiveness. These results indicate that GM supplementation modulates the immune system, intestinal microbiota and impacts SE infection of young chickens.


Subject(s)
Gastrointestinal Microbiome , Poultry Diseases , Salmonella Infections, Animal , Animals , CD8-Positive T-Lymphocytes , Chickens , Dietary Supplements/analysis , Mannans , Salmonella Infections, Animal/microbiology , Salmonella enteritidis/physiology , Serogroup
8.
Nat Commun ; 12(1): 6802, 2021 11 23.
Article in English | MEDLINE | ID: mdl-34815406

ABSTRACT

In the first wave of the COVID-19 pandemic (April 2020), SARS-CoV-2 was detected in farmed minks and genomic sequencing was performed on mink farms and farm personnel. Here, we describe the outbreak and use sequence data with Bayesian phylodynamic methods to explore SARS-CoV-2 transmission in minks and humans on farms. High number of farm infections (68/126) in minks and farm workers (>50% of farms) were detected, with limited community spread. Three of five initial introductions of SARS-CoV-2 led to subsequent spread between mink farms until November 2020. Viruses belonging to the largest cluster acquired an amino acid substitution in the receptor binding domain of the Spike protein (position 486), evolved faster and spread longer and more widely. Movement of people and distance between farms were statistically significant predictors of virus dispersal between farms. Our study provides novel insights into SARS-CoV-2 transmission between mink farms and highlights the importance of combining genetic information with epidemiological information when investigating outbreaks at the animal-human interface.


Subject(s)
COVID-19/epidemiology , COVID-19/transmission , COVID-19/virology , Evolution, Molecular , Farms , Mink/virology , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Amino Acid Sequence , Animal Diseases/epidemiology , Animal Diseases/transmission , Animal Diseases/virology , Animals , Bayes Theorem , Disease Outbreaks , Humans , Netherlands/epidemiology , Phylogeny , SARS-CoV-2/isolation & purification , Sequence Analysis, Protein , Spike Glycoprotein, Coronavirus/classification , Spike Glycoprotein, Coronavirus/genetics
9.
Vet Res ; 52(1): 109, 2021 Aug 17.
Article in English | MEDLINE | ID: mdl-34404469

ABSTRACT

Salmonella enterica serotype Enteritidis (SE) is a zoonotic pathogen which causes foodborne diseases in humans as well as severe disease symptoms in young chickens. More insight in innate and adaptive immune responses of chickens to SE infection is needed to understand elimination of SE. Seven-day-old broiler chickens were experimentally challenged with SE and numbers and responsiveness of innate and adaptive immune cells as well as antibody titers were assessed. SE was observed in the ileum and spleen of SE-infected chickens at 7 days post-infection (dpi). At 1 dpi numbers of intraepithelial cytotoxic CD8+ T cells were significantly increased alongside numerically increased intraepithelial IL-2Rα+ and 20E5+ natural killer (NK) cells at 1 and 3 dpi. At both time points, activation of intraepithelial and splenic NK cells was significantly enhanced. At 7 dpi in the spleen, presence of macrophages and expression of activation markers on dendritic cells were significantly increased. At 21 dpi, SE-induced proliferation of splenic CD4+ and CD8+ T cells was observed and SE-specific antibodies were detected in sera of all SE-infected chickens. In conclusion, SE results in enhanced numbers and activation of innate cells and we hypothesized that in concert with subsequent specific T cell and antibody responses, reduction of SE is achieved. A better understanding of innate and adaptive immune responses important in the elimination of SE will aid in developing immune-modulation strategies, which may increase resistance to SE in young broiler chickens.


Subject(s)
Adaptive Immunity , Chickens , Immunity, Innate , Poultry Diseases/immunology , Salmonella Infections, Animal/immunology , Salmonella enteritidis/physiology , Animals , Female , Male , Poultry Diseases/microbiology , Salmonella Infections, Animal/microbiology
10.
Vet Sci ; 8(6)2021 Jun 12.
Article in English | MEDLINE | ID: mdl-34204778

ABSTRACT

Restrictions on the use of antibiotics in the poultry industry stimulate the development of alternative nutritional solutions to maintain or improve poultry health. This requires more insight in the modulatory effects of feed additives on the immune system and microbiota composition. Compounds known to influence the innate immune system and microbiota composition were selected and screened in vitro, in ovo, and in vivo. Among all compounds, 57 enhanced NK cell activation, 56 increased phagocytosis, and 22 increased NO production of the macrophage cell line HD11 in vitro. Based on these results, availability and regulatory status, six compounds were selected for further analysis. None of these compounds showed negative effects on growth, hatchability, and feed conversion in in ovo and in vivo studies. Based on the most interesting numerical results and highest future potential feasibility, two compounds were analyzed further. Administration of glucose oligosaccharide and long-chain glucomannan in vivo both enhanced activation of intraepithelial NK cells and led to increased relative abundance of lactic acid bacteria (LAB) amongst ileum and ceca microbiota after seven days of supplementation. Positive correlations between NK cell subsets and activation, and relative abundance of LAB suggest the involvement of microbiota in the modulation of the function of intraepithelial NK cells. This study identifies glucose oligosaccharide and long-chain glucomannan supplementation as effective nutritional strategies to modulate the intestinal microbiota composition and strengthen the intraepithelial innate immune system.

11.
Animals (Basel) ; 11(3)2021 Mar 19.
Article in English | MEDLINE | ID: mdl-33808871

ABSTRACT

The Welfare Quality® assessment protocol (WQ) is the most extensive way to measure animal welfare. This study was set up to determine if resource-based welfare indicators, that are easier and faster to measure, could replace the more time consuming, animal-based measurements of the WQ. The WQ was applied on 60 dairy farms in the Netherlands, with good, moderate and poor welfare. The WQ protocol classified most farms (87%) as 'acceptable'. Several of the animal-based measures of WQ correlated well with measures in the environment. Using these correlations, an alternative welfare assessment protocol (new Welfare Monitor) was designed, which takes approximately 1.5 h for a farm with 100 dairy cows. Because the opinion of farmers about welfare assessment is important if one wants to improve conditions for the cows at a farm, another objective of this study was to evaluate the usefulness of the new Welfare Monitor for the farmer. Over two years, the farms were visited, and advice was given to improve the conditions at the farm. After the first welfare assessment and advice, farmers improved the conditions for their cows substantially. Farms where the category score had increased made more improvements on average than those that did not upgrade.

12.
Transbound Emerg Dis ; 68(1): 76-87, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32419342

ABSTRACT

Highly pathogenic (HP) avian influenza viruses (AIV) can spread globally through migratory birds and cause massive outbreaks in commercial poultry. AIV outbreaks have been associated with proximity to waterbodies, presence of waterfowl or wild bird cases near poultry farms. In this study, we compared densities of selected HPAI high-risk wild bird species around 7 locations (H farms) infected with HPAIV H5N8 in the Netherlands in 2016-2017 to densities around 21 non-infected reference farms. Nine reference farms were in low-lying water-rich areas (R-W) and 12 in higher non-water-rich areas (R-NW). Average monthly numbers/km2 of Eurasian wigeons, tufted ducks, Anatidae (ducks, geese and swans) and Laridae (gulls) were calculated between September and April in rings of 0-1, 1-3, 3-6 and 6-10 km around the farms. Linear mixed model analyses showed generally higher bird densities for H and R-W compared to R-NW farms between October and March. This was most striking for Eurasian wigeons, with in peak month December 105 (95% CI:17-642) and 40 (7-214) times higher densities around H and R-W farms, respectively, compared to R-NW farms. Increased densities around H farms for Eurasian wigeons and Anatidae were more pronounced for distances up to 10 km compared to 0-1 km that mostly consists of the farm yard, which is an unattractive habitat for waterfowl. This distance effect was not observed in gulls, nor in tufted ducks that live on large open waterbodies which are unlikely to be within 0-1 km of farms. This study provides insights into spatio-temporal density dynamics of HPAI high-risk birds around farms and their associations with poultry outbreaks. The outcomes indicate that knowledge of environmental and ecological drivers for wild bird presence and abundance may facilitate identification of priority areas for surveillance and biosecurity measures and decisions on establishments of poultry farms to reduce risk of HPAI outbreaks.


Subject(s)
Animals, Wild/physiology , Anseriformes/physiology , Charadriiformes/physiology , Disease Outbreaks/veterinary , Farms , Influenza A Virus, H5N8 Subtype/physiology , Influenza in Birds/epidemiology , Animals , Influenza in Birds/virology , Netherlands/epidemiology , Population Density , Poultry , Risk Factors
13.
Transbound Emerg Dis ; 68(1): 88-97, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32418364

ABSTRACT

In recent years, different subtypes of highly pathogenic avian influenza (HPAI) viruses caused outbreaks in several poultry types worldwide. Early detection of HPAI virus infection is crucial to reduce virus spread. Previously, the use of a mortality ratio threshold to expedite notification of suspicion in layer farms was proposed. The purpose of this study was to describe the clinical signs reported in the early stages of HPAI H5N8 and H5N6 outbreaks on chicken and Pekin duck farms between 2014 and 2018 in the Netherlands and compare them with the onset of an increased mortality ratio (MR). Data on daily mortality and clinical signs from nine egg-producing chicken farms and seven Pekin duck farms infected with HPAI H5N8 (2014 and 2016) and H5N6 (2017-2018) in the Netherlands were analysed. In 12 out of 15 outbreaks for which a MR was available, MR increase preceded or coincided with the first observation of clinical signs by the farmer. In one chicken and two Pekin duck outbreaks, clinical signs were observed prior to MR increase. On all farms, veterinarians observed clinical signs of general disease. Nervous or locomotor signs were reported in all Pekin duck outbreaks, but only in two chicken outbreaks. Other clinical signs were observed less frequently in both chickens and Pekin ducks. Compared to veterinarians, farmers observed and reported clinical signs, especially respiratory and gastrointestinal signs, less frequently. This case series suggests that a MR with a set threshold could be an objective parameter to detect HPAI infection on chicken and Pekin duck farms at an early stage. Observation of clinical signs may provide additional indication for farmers and veterinarians for notifying a clinical suspicion of HPAI infection. Further assessment and validation of a MR threshold in Pekin ducks are important as it could serve as an important tool in HPAI surveillance programs.


Subject(s)
Chickens , Disease Outbreaks/veterinary , Ducks , Influenza A virus/physiology , Influenza in Birds/epidemiology , Poultry Diseases/epidemiology , Animals , Influenza A Virus, H5N8 Subtype/physiology , Influenza A virus/classification , Influenza in Birds/virology , Netherlands/epidemiology , Poultry Diseases/virology
14.
Front Vet Sci ; 7: 558455, 2020.
Article in English | MEDLINE | ID: mdl-33330687

ABSTRACT

As antimicrobial resistance is a worldwide problem, threatening both livestock and public health, understanding the drivers for resistance in different settings and countries is essential. Therefore, 30 pig and 30 poultry farms with country-specific high antimicrobial use (AMU) were recruited in the Belgian-Dutch border region. Information regarding production parameters, farm characteristics, biosecurity, and AMU was collected. On average, more biosecurity measures were implemented on Dutch farms, compared to Belgian farms in both animal species. In addition, more opportunities were found to increase the level of internal biosecurity compared to external biosecurity in both countries. AMU, quantified as treatment incidence (TI), differed marginally significant between broiler farms in Belgium and the Netherlands (median BE: 8; NL: 3), whereas in weaned piglets (median BE: 45 and NL: 14) and finishing pigs (median BE: 5 and NL: 1), there was a substantial difference in AMU between farms from both countries. Overall, Dutch farms showed less between-farm variation in TI than did Belgian farms. In both poultry and pig production, the majority of antimicrobials used were extended-spectrum penicillins (BE: 32 and 40%; NL: 40 and 24% for poultry and pigs, respectively). Compared to Belgian farms, Dutch poultry farms used high amounts of (fluoro)quinolones (1 and 15% of total AMU, respectively). None of the production parameters between broiler farms differed significantly, but in pig production, weaning age in Belgian farms (median: 23) was lower than in Dutch farms (median: 27). These results indicate considerable room for improvement in both countries and animal species. Farm-specific preventive strategies can contribute to lowering the risk for animal disease and hence the need for AMU.

15.
Front Vet Sci ; 7: 584561, 2020.
Article in English | MEDLINE | ID: mdl-33330708

ABSTRACT

Studies in mammals, including chickens, have shown that the development of the immune system is affected by interactions with intestinal microbiota. Early life microbial colonization may affect the development of innate and adaptive immunity and may contribute to lasting effects on health and resilience of broiler chickens. We inoculated broiler chickens with adult-derived-microbiota (AM) to investigate their effects on intestinal microbiota composition and natural killer (NK) cells, amongst other immune cells. We hypothesized that AM inoculation directly upon hatch (day 0) would induce an alteration in microbiota composition shortly after hatch, and subsequently affect (subsets of) intestinal NK cells and their activation. Microbiota composition of caecal and ileal content of chickens of 1, 3, 7, 14, 21, and 35 days of age was assessed by sequencing of 16S ribosomal RNA gene amplicons. In parallel, subsets and activation of intestinal NK cells were analyzed by flow cytometry. In caecal content of 1- and 3-day-old AM chickens, a higher alpha-diversity (Faith's phylogenetic diversity) was observed compared to control chickens, whereas ileal microbiota were unaffected. Regarding beta-diversity, caecal microbiota profiles could be clustered into three distinct community types. Cluster A represented caecal microbiota of 1-day-old AM chickens and 1- and 3-day-old control chickens. Cluster B included microbiota of seven of eight 3- and 7-day-old AM and 7-day-old control chickens, and cluster C comprised microbiota of all chickens of 14-days and older, independent of inoculation. In 3-day-old AM chickens an increase in the percentages of intestinal IL-2Rα+NK cells and activated NK cells was observed compared to control chickens of the same age. In addition, an increase in relative numbers of intestinal cytotoxic CD8αα+T cells was observed in 14- and 21-day-old AM chickens. Taken together, these results indicate that early exposure to AM shapes and accelerates the maturation of caecal microbiota, which is paralleled by an increase in IL-2Rα+NK cells and enhanced NK cell activation. The observed association between early life development of intestinal microbiota and immune system indicates possibilities to apply microbiota-targeted strategies that can accelerate maturation of intestinal microbiota and strengthen the immune system, thereby improving the health and resilience of broiler chickens.

16.
Vaccines (Basel) ; 8(4)2020 Oct 16.
Article in English | MEDLINE | ID: mdl-33081359

ABSTRACT

Newcastle Disease is one of the most important infectious poultry diseases worldwide and is associated with high morbidity, mortality, and economic loss. In several countries, vaccination is applied to prevent and control outbreaks; however, information on the ability of vaccines to reduce transmission of ND virus (NDV) is sparse. Here we quantified the transmission of velogenic NDV among 42-day-old broilers. Chickens were either vaccinated with a single dose of a vector vaccine expressing the F protein (rHVT-ND) at day-old in the presence of maternally derived antibodies or kept unvaccinated. Seeders were challenged 8 h before the co-mingling with the corresponding contacts from the same group. Infection was monitored by daily testing of cloacal and oro-nasal swabs with reverse transcription-real-time PCR and by serology. Vaccinated birds were completely protected against clinical disease and virus excretion was significantly reduced compared to the unvaccinated controls that all died during the experiment. The reproduction ratio, which is the average number of secondary infections caused by an infectious bird, was significantly lower in the vaccinated group (0.82 (95% CI 0.38-1.75)) than in the unvaccinated group (3.2 (95% CI 2.06-4.96)). Results of this study demonstrate the potential of rHVT-ND vaccine in prevention and control of ND outbreaks.

17.
Anim Microbiome ; 2(1): 28, 2020 Aug 08.
Article in English | MEDLINE | ID: mdl-33499947

ABSTRACT

BACKGROUND: Laying hens with access to outdoor ranges are exposed to additional environmental factors and microorganisms, including potential pathogens. Differences in composition of the cloacal microbial community between indoor- and outdoor-housed layers may serve as an indicator for exposure to the outdoor environment, including its pathogens, and may yield insights into factors affecting the chickens' microbiota community dynamics. However, little is known about the influence of outdoor housing on microbiota community composition in commercial layer flocks. We performed a cross-sectional field study to evaluate differences in the cloacal microbiota of indoor- vs outdoor-layers across farms. Eight layer flocks (four indoor, four outdoor) from five commercial poultry farms were sampled. Indoor and outdoor flocks with the same rearing flock of origin, age, and breed were selected. In each flock, cloacal swabs were taken from ten layers, and microbiota were analysed with 16S rRNA gene amplicon sequencing. RESULTS: Housing type (indoor vs outdoor), rearing farm, farm and poultry house within the farm all significantly contributed to bacterial community composition. Poultry house explained most of the variation (20.9%), while housing type only explained 0.2% of the variation in community composition. Bacterial diversity was higher in indoor-layers than in outdoor-layers, and indoor-layers also had more variation in their bacterial community composition. No phyla or genera were found to be differentially abundant between indoor and outdoor poultry houses. One amplicon sequence variant was exclusively present in outdoor-layers across all outdoor poultry houses, and was identified as Dietzia maris. CONCLUSIONS: This study shows that exposure to an outdoor environment is responsible for a relatively small proportion of the community variation in the microbiota of layers. The poultry house, farm, and rearing flock play a much greater role in determining the cloacal microbiota composition of adult laying hens. Overall, measuring differences in cloacal microbiota of layers as an indicator for the level of exposure to potential pathogens and biosecurity seems of limited practical use. To gain more insight into environmental drivers of the gut microbiota, future research should aim at investigating community composition of commercial layer flocks over time.

18.
Front Microbiol ; 11: 626713, 2020.
Article in English | MEDLINE | ID: mdl-33584593

ABSTRACT

Associations between animal health and performance, and the host's microbiota have been recently established. In poultry, changes in the intestinal microbiota have been linked to housing conditions and host development, but how the intestinal microbiota respond to environmental changes under farm conditions is less well understood. To gain insight into the microbial responses following a change in the host's immediate environment, we monitored four indoor flocks of adult laying chickens three times over 16 weeks, during which two flocks were given access to an outdoor range, and two were kept indoors. To assess changes in the chickens' microbiota over time, we collected cloacal swabs of 10 hens per flock and performed 16S rRNA gene amplicon sequencing. The poultry house (i.e., the stable in which flocks were housed) and sampling time explained 9.2 and 4.4% of the variation in the microbial community composition of the flocks, respectively. Remarkably, access to an outdoor range had no detectable effect on microbial community composition, the variability of microbiota among chickens of the same flock, or microbiota richness, but the microbiota of outdoor flocks became more even over time. Fluctuations in the composition of the microbiota over time within each poultry house were mainly driven by turnover in rare, rather than dominant, taxa and were unique for each flock. We identified 16 amplicon sequence variants that were differentially abundant over time between indoor and outdoor housed chickens, however none were consistently higher or lower across all chickens of one housing type over time. Our study shows that cloacal microbiota community composition in adult layers is stable following a sudden change in environment, and that temporal fluctuations are unique to each flock. By exploring microbiota of adult poultry flocks within commercial settings, our study sheds light on how the chickens' immediate environment affects the microbiota composition.

19.
Microorganisms ; 7(12)2019 Dec 12.
Article in English | MEDLINE | ID: mdl-31842337

ABSTRACT

Bovine mastitis is a costly disease to the dairy industry and intramammary infections (IMI) with Staphylococcus aureus are a major cause of mastitis. Staphylococcus aureus strains responsible for mastitis in cattle predominantly belong to ruminant-associated clonal complexes (CCs). Recognition of pathogens by bovine mammary epithelial cells (bMEC) plays a key role in activation of immune responsiveness during IMI. However, it is still largely unknown to what extent the bMEC response differs according to S. aureus CC. The aim of this study was to determine whether ruminant-associated S. aureus CCs differentially activate bMEC. For this purpose, the immortalized bMEC line PS was stimulated with S. aureus mastitis isolates belonging to four different clonal complexes (CCs; CC133, CC479, CC151 and CC425) and interleukin 8 (IL-8) release was measured as indicator of activation. To validate our bMEC model, we first stimulated PS cells with genetically modified S. aureus strains lacking (protein A, wall teichoic acid (WTA) synthesis) or expressing (capsular polysaccharide (CP) type 5 or type 8) factors expected to affect S. aureus recognition by bMEC. The absence of functional WTA synthesis increased IL-8 release by bMEC in response to bacterial stimulation compared to wildtype. In addition, bMEC released more IL-8 after stimulation with S. aureus expressing CP type 5 compared to CP type 8 or a strain lacking CP expression. Among the S. aureus lineages, isolates belonging to CC133 induced a significantly stronger IL-8 release from bMEC than isolates from the other CCs, and the IL-8 response to CC479 was higher compared to CC151 and CC425. Transcription levels of IL-8, tumor necrosis factor alpha (TNFα), serum amyloid A3 (SAA3), Toll-like receptor (TLR)-2 and nuclear factor κB (NF-κB) in bMEC after bacterial stimulation tended to follow a similar pattern as IL-8 release, but there were no significant differences between the CCs. This study demonstrates a differential activation of bMEC by ruminant-associated CCs of S. aureus, which may have implications for the severity of mastitis during IMI by S. aureus belonging to these lineages.

20.
Microorganisms ; 7(10)2019 Oct 10.
Article in English | MEDLINE | ID: mdl-31658673

ABSTRACT

In the short life of broiler chickens, their intestinal microbiota undergoes many changes. To study underlying biological mechanisms and factors that influence the intestinal microbiota development, longitudinal data from flocks and individual birds is needed. However, post-mortem collection of samples hampers longitudinal data collection. In this study, invasively collected cecal and ileal content, cloacal swabs collected from the same bird, and boot sock samples and cecal droppings from the litter of the broilers' poultry house, were collected on days 0, 2, 7, 14 and 35 post-hatch. The different sample types were evaluated on their applicability and reliability to characterize the broiler intestinal microbiota. The microbiota of 247 samples was assessed by 16S ribosomal RNA gene amplicon sequencing. Analyses of α and ß measures showed a similar development of microbiota composition of cecal droppings compared to cecal content. Furthermore, the composition of cecal content samples was comparable to that of the boot socks until day 14 post-hatch. This study shows that the value of non-invasive sample types varies at different ages and depends on the goal of the microbiota characterization. Specifically, cecal droppings and boot socks may be useful alternatives for cecal samples to determine intestinal microbiota composition longitudinally.

SELECTION OF CITATIONS
SEARCH DETAIL
...