Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 145(30): 16374-16382, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37467432

ABSTRACT

Manifesting chemical differences in individual rare earth (RE) element complexes is challenging due to the similar sizes of the tripositive cations and the corelike 4f shell. We disclose a new strategy for differentiating between similarly sized Dy3+ and Y3+ ions through a tailored photochemical reaction of their isostructural complexes in which the f-electron states of Dy3+ act as an energy sink. Complexes RE(hfac)3(NMMO)2 (RE = Dy (2-Dy) and Y (2-Y), hfac = hexafluoroacetylacetonate, and NMMO = N-methylmorpholine-N-oxide) showed variable rates of oxygen atom transfer (OAT) to triphenylphosphine under ultraviolet (UV) irradiation, as monitored by 1H and 19F NMR spectroscopies. Ultrafast transient absorption spectroscopy (TAS) identified the excited state(s) responsible for the photochemical OAT reaction or lack thereof. Competing sensitization pathways leading to excited-state deactivation in 2-Dy through energy transfer to the 4f electron manifold ultimately slows the OAT reaction at this metal cation. The measured rate differences between the open-shell Dy3+ and closed-shell Y3+ complexes demonstrate that using established principles of 4f ion sensitization may deliver new, selective modalities for differentiating the RE elements that do not depend on cation size.

2.
Nanoscale ; 14(3): 752-765, 2022 Jan 20.
Article in English | MEDLINE | ID: mdl-34940772

ABSTRACT

Two-dimensional metal-halide perovskites (MHPs) are versatile solution-processed organic/inorganic quantum wells where the structural anisotropy creates profound anisotropy in their electronic and excitonic properties and associated optical constants. We here employ a wholistic framework, based on semiempirical modeling (k·p/effective mass theory calculations) informed by hybrid density functional theory (DFT) and multimodal spectroscopic ellipsometry on (C6H5(CH2)2NH3)2PbI4 films and crystals, that allows us to link the observed optical properties and anisotropy precisely to the underlying physical parameters that shape the electronic structure of a layered MHP. We find substantial frequency-dependent anisotropy in the optical constants and close correspondence between experiment and theory, demonstrating a high degree of in-plane alignment of the two-dimensional planes in both spin-coated thin films and cleaved single crystals made in this study. Hybrid DFT results elucidate the degree to which organic and inorganic frontier orbitals contribute to optical transitions polarized along a particular axis. The combined experimental and theoretical approach enables us to estimate the fundamental electronic bandgap of 2.65-2.68 eV in this prototypical 2D perovskite and to determine the spin-orbit coupling (ΔSO = 1.20 eV) and effective crystal field (δ = -1.36 eV) which break the degeneracy of the frontier conduction band states and determine the exciton fine structure. The methods and results described here afford a better understanding of the connection between structure and induced optical anisotropy in quantum-confined MHPs, an important structure-property relationship for optoelectronic applications and devices.

3.
Nat Commun ; 11(1): 429, 2020 Jan 22.
Article in English | MEDLINE | ID: mdl-31969565

ABSTRACT

Superfluidity, first discovered in liquid 4He, is closely related to Bose-Einstein condensation (BEC) phenomenon. However, even at zero temperature, a fraction of the quantum liquid is excited out of the condensate into higher momentum states via interaction-induced fluctuations-the phenomenon of quantum depletion. Quantum depletion of atomic BECs in thermal equilibrium is well understood theoretically but is difficult to measure. This measurement is even more challenging in driven-dissipative exciton-polariton condensates, since their non-equilibrium nature is predicted to suppress quantum depletion. Here, we observe quantum depletion of a high-density exciton-polariton condensate by detecting the spectral branch of elementary excitations populated by this process. Analysis of this excitation branch shows that quantum depletion of exciton-polariton condensates can closely follow or strongly deviate from the equilibrium Bogoliubov theory, depending on the exciton fraction in an exciton polariton. Our results reveal beyond mean-field effects of exciton-polariton interactions and call for a deeper understanding of the relationship between equilibrium and non-equilibrium BECs.

5.
Opt Lett ; 42(6): 1165-1168, 2017 Mar 15.
Article in English | MEDLINE | ID: mdl-28295074

ABSTRACT

We demonstrate the condensation of microcavity polaritons with a very sharp threshold occurring at a two orders of magnitude pump intensity lower than previous demonstrations of condensation. The long cavity lifetime and trapping and pumping geometries are crucial to the realization of this low threshold. Polariton condensation, or "polariton lasing" has long been proposed as a promising source of coherent light at a lower threshold than traditional lasing, and these results indicate some considerations for optimizing designs for lower thresholds.

6.
Phys Rev Lett ; 118(1): 016602, 2017 Jan 06.
Article in English | MEDLINE | ID: mdl-28106443

ABSTRACT

The experimental realization of Bose-Einstein condensation (BEC) with atoms and quasiparticles has triggered wide exploration of macroscopic quantum effects. Microcavity polaritons are of particular interest because quantum phenomena such as BEC and superfluidity can be observed at elevated temperatures. However, polariton lifetimes are typically too short to permit thermal equilibration. This has led to debate about whether polariton condensation is intrinsically a nonequilibrium effect. Here we report the first unambiguous observation of BEC of optically trapped polaritons in thermal equilibrium in a high-Q microcavity, evidenced by equilibrium Bose-Einstein distributions over broad ranges of polariton densities and bath temperatures. With thermal equilibrium established, we verify that polariton condensation is a phase transition with a well-defined density-temperature phase diagram. The measured phase boundary agrees well with the predictions of basic quantum gas theory.

7.
Opt Express ; 22(25): 30559-70, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25607003

ABSTRACT

We demonstrate coherence between exciton-polariton condensates created resonantly at different times. The coherence persists much longer than the individual particle dephasing time, and this persistence increases as the particle density increases. The observed coherence time exceeds that of the injecting laser pulse by more than an order of magnitude. We show that this significant coherence enhancement relies critically on the many-body particle interactions, as verified by its dependence on particle density, interaction strength, and bath temperature, whereas the mass of the particles plays no role in the condensation of resonantly injected polaritons. Furthermore, we observe a large nonlinear phase shift resulting from intra-condensate interaction energy. Our results provide a new approach for probing ultrafast dynamics of resonantly-created condensates and open new directions in the study of coherence in matter.

SELECTION OF CITATIONS
SEARCH DETAIL
...