Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Rev Sci Instrum ; 94(3): 034103, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-37012765

ABSTRACT

We introduce an effective and flexible high vacuum interface to probe the liquid phase with photoelectron photoion coincidence (liq-PEPICO) spectroscopy at the vacuum ultraviolet (VUV) beamline of the Swiss Light Source. The interface comprises a high-temperature sheath gas-driven vaporizer, which initially produces aerosols. The particles evaporate and form a molecular beam, which is skimmed and ionized by VUV radiation. The molecular beam is characterized using ion velocity map imaging, and the vaporization parameters of the liq-PEPICO source have been optimized to improve the detection sensitivity. Time-of-flight mass spectra and photoion mass-selected threshold photoelectron spectra (ms-TPES) were recorded for an ethanolic solution of 4-propylguaiacol, vanillin, and 4-hydroxybenzaldehyde (1 g/l of each). The ground state ms-TPES band of vanillin reproduces the reference, room-temperature spectrum well. The ms-TPES for 4-propylguaiacol and 4-hydroxybenzaldehyde are reported for the first time. Vertical ionization energies obtained by equation-of-motion calculations reproduce the photoelectron spectral features. We also investigated the aldol condensation dynamics of benzaldehyde with acetone using liq-PEPICO. Our direct sampling approach, thus, enables probing reactions at ambient pressure during classical synthesis procedures and microfluidic chip devices.

2.
J Phys Chem A ; 125(14): 2895-2904, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33797917

ABSTRACT

We studied the thermal decomposition of dimethyl carbonate (DMC, C3H6O3) in a flash vacuum pyrolysis reactor in the 1100-1700 K range. The reaction products and intermediates were probed by vacuum ultraviolet synchrotron radiation in a photoelectron photoion coincidence (PEPICO) spectrometer to record isomer-specific photoion mass-selected threshold photoelectron (ms-TPE) spectra. Reaction pathways were explored using quantum chemical calculations, which confirmed the experimental observation that the intramolecular migration of a methyl group, yielding dimethyl ether (DME, C2H6O) and carbon dioxide, dominates the initial unimolecular decomposition chemistry. The role of a second potentially important channel, namely, C-O bond fission to yield methyl radicals, could not be determined experimentally due to the short lifetime of the ·C2H3O3 radical and overlapping sequential decomposition products. However, potential energy surface and microcanonical rate constant calculations predict 2 to 3 orders of magnitude lower rates for this channel than for decarboxylation to yield DME. Consequently, DMC pyrolysis shows bewilderingly similar products and product abundances as DME pyrolysis. This coincides with DMC combustion modeling studies, which found that DME is a key intermediate in the mechanism. Furthermore, we have detected traces of methyl formate and formaldehyde, produced after the hydrogen shift to the central carbon atom in DMC. Ethylene and acetylene could be established as bimolecular reaction products because their abundance depended strongly on the DMC concentration. It is intriguing to compare the decomposition of DMC with that of the structurally similar methylal (dimethoxymethane, DMM). While methanol and formaldehyde are produced in similar quantities in DMM, thanks to low-energy hydrogen-transfer reactions, the methanol channel is almost fully suppressed in DMC due to the absence of hydrogens at the central carbon atom and the thermodynamically favored decarboxylation. These new mechanistic insights may help the development of predictive combustion models for fuel additives and biofuels.

3.
Chemistry ; 26(47): 10795-10800, 2020 Aug 21.
Article in English | MEDLINE | ID: mdl-32428377

ABSTRACT

Reactive species, such as . PO2 and HOPO, are considered of upmost importance in flame inhibition and catalytic combustion processes of fuels. However, the underlying chemistry of their formation remains speculative due to the unavailability of suitable analytical techniques that can be used to identify the transient species which lead to their formation. This study elucidates the reaction mechanisms of the formation of phosphoryl species from dimethyl methyl phosphonate (DMMP) and dimethyl methyl phosphoramidate (DMPR) under well-defined oxidative conditions. Photoelectron photoion coincidence techniques that utilized vacuum ultraviolet synchrotron radiation were applied to isomer-selectively detect the elusive key intermediates and stable products. With the help of in situ recorded spectral fingerprints, different transient species, such as PO2 and triplet O radicals, have been exclusively identified from their isomeric components, which has helped to piece together the formation mechanisms of phosphoryl species under various conditions. It was found that . PO2 formation required oxidative conditions above 1070 K. The combined presence of O2 and H2 led to significant changes in the decomposition chemistry of both model phosphorus compounds, leading to the formation of . PO2 . The reaction . PO+O2 →. PO2 +O: was identified as the key step in the formation of . PO2 . Interestingly, the presence of O2 in DMPR thermolysis suppresses the formation of PN-containing species. In a previous study, PN species were identified as the major species formed during the pyrolysis of DMPR. Thus, the findings of this study has shed light onto the decomposition pathways of organophosphorus compounds, which are beneficial for their fuel additive and fire suppressant applications.

4.
Phys Chem Chem Phys ; 21(2): 581-588, 2019 Jan 02.
Article in English | MEDLINE | ID: mdl-30540303

ABSTRACT

Excited xylyl (methyl-benzyl) radical isomers have been studied by femtosecond time-resolved photoelectron spectroscopy and mass spectrometry. Depending on the substitution we find different deactivation channels after excitation into the D3(2A'') state (310 nm, 4 eV). While the ortho and para isomer exhibit deactivation rates similar to the benzyl radical, meta-xylyl sticks out and depletes twice as fast into the vibrationally hot ground state. We found that a ring deformation mode rather than the methyl pseudorotation enables access to a conical intersection, which is responsible for the faster deactivation. Transitions in the photoelectron spectrum can be assigned to several Rydberg series with mostly d angular momentum components. Absorption of two 4 eV photons triggers hydrogen loss reactions on a femtosecond timescale.

5.
Phys Chem Chem Phys ; 20(10): 7180-7189, 2018 Mar 07.
Article in English | MEDLINE | ID: mdl-29480313

ABSTRACT

Resonant one-color two-photon ionization spectroscopy and mass-selected threshold photoelectron spectroscopy were applied to study the electronic doublet states of the three xylyl (methyl-benzyl) radicals above 3.9 eV as well as the singlet and triplet states of the cations up to 10.5 eV. The experiments are complemented by quantum chemical calculations and Franck-Condon simulations to characterize the transitions and to identify the origin bands, allowing a precise determination of singlet-triplet splittings in the cations. Torsional motions of the methyl group notably affect the D0 → D3 transition of m-xylyl. All other investigated transitions either lead to electronic states with very low rotational barriers or suffer from spectral broadening in excess of methyl torsional energy levels. The methyl internal rotational potential is faithfully reproduced with the most basic ab initio methods, yet hyperconjugation could not be identified as a significant force shaping them. Time-dependent density functional theory describes the excited electronic states better than wave function theory approaches, notably EOM-CCSD.

6.
J Am Chem Soc ; 139(41): 14348-14351, 2017 10 18.
Article in English | MEDLINE | ID: mdl-28965395

ABSTRACT

The meta-xylylene diradical m-C8H8 is a prototypical organic triplet that represents a building block for organic molecule-based magnets and also serves as a model compound for test and refinement of quantum chemical calculations. Flash vacuum pyrolysis of 1,3-bis-iodomethyl-benzene (m-C8H8I2) produces m-C8H8 in gas phase; we used photoelectron spectroscopy to probe the first two electronic states of the radical cation, and resolve the vibrational fine structure of the ground state band. The determined adiabatic ionization energy of m-C8H8 is (7.27 ± 0.01) eV. Heat of formation of the diradical was established measuring C-I bond dissociation thresholds in the precursor cation and utilizing a thermochemical cycle to yield ΔHf,298K = (325 ± 8) kJ mol-1, ca. 10 kJ mol-1 below the previous value.

7.
J Chem Phys ; 147(8): 084303, 2017 Aug 28.
Article in English | MEDLINE | ID: mdl-28863545

ABSTRACT

The photodissociation dynamics of the C8H9 isomers ortho- and para-xylyl are investigated in a free jet. The xylyl radicals are generated by flash pyrolysis from 2-(2-methylphenyl)- and 2-(4-methylphenyl) ethyl nitrite and are excited into the D3 state. REMPI- spectra show vibronic structure and the origin of the transition is identified at 32 291 cm-1 for the para- and at 32 132 cm-1 for the ortho-isomer. Photofragment H-atom action spectra show bands at the same energy and thus confirm H-atom loss from xylyl radicals. To gain further insight into the photodissociation dynamics, velocity map images of the hydrogen atom photofragments are recorded. Their angular distribution is isotropic and the translational energy release is in agreement with a dissociation to products in their electronic ground state. Photodissociation of para-xylyl leads to the formation of para-xylylene (C8H8), while the data for ortho-xylyl agree much better with the isomer benzocyclobutene as the dominant molecular fragment rather than ortho-xylylene. In computations we identified a new pathway for the reaction ortho-xylyl → benzocyclobutene + H with a barrier of 3.39 eV (27 340 cm-1), which becomes accessible at the employed excitation energy. It proceeds via a combination of scissoring and rotational motion of the -CH2 and -CH3 groups. However, the observed rate constants measured by delaying the excitation and ionization laser with respect to each other are significantly faster than computed ones, indicating intrinsic non-RRKM behaviour. A comparably high value of around 30% of the excess energy is released as translation of the H-atom photofragment.

8.
J Phys Chem A ; 119(44): 10849-53, 2015 Nov 05.
Article in English | MEDLINE | ID: mdl-26463227

ABSTRACT

The gas phase detection of benzocyclopropenyl is reported. In this aromatic resonance stabilized radical, a large angular strain is present due to a three-membered ring annelated to a benzene. The resonant two-color two-photon ionization technique is used to record the D1((2)A2) ← D0((2)B1) electronic transition of this radical after the in situ synthesis in a discharge source. The spectrum features absorptions up to 3300 cm(-1) above the origin band at 19,305 cm(-1). Benzocyclopropenyl is possibly the major product of the bimolecular reaction of benzene and an atomic carbon at low temperatures.

9.
J Chem Phys ; 142(24): 244311, 2015 Jun 28.
Article in English | MEDLINE | ID: mdl-26133432

ABSTRACT

The 1(3)Σu (-)←X(3)Σg (-) transition of linear HC5H (A) has been observed in a neon matrix and gas phase. The assignment is based on mass-selective experiments, extrapolation of previous results of the longer HC2n+1H homologues, and density functional and multi-state CASPT2 theoretical methods. Another band system starting at 303 nm in neon is assigned as the 1(1)A1←X˜(1)A1 transition of the cumulene carbene pentatetraenylidene H2C5 (B).

10.
J Phys Chem A ; 119(34): 9078-84, 2015 Aug 27.
Article in English | MEDLINE | ID: mdl-26203496

ABSTRACT

The gas-phase electronic spectra of two resonantly stabilized radicals, 1-indanyl (C9H9) and 1-methyl-1-indanyl (C10H11), have been recorded in the visible region using a resonant two-color two-photon ionization (R2C2PI) scheme. The D1(A″) ← D0(A″) origin bands of 1-indanyl and 1-methyl-1-indanyl radicals are observed at 21157 and 20565 cm(­1), respectively. The excitation of a' vibrations in the D1 state is observed up to ∼1500 cm(­1) above the origin band in both cases. The experimental assignments are in agreement with DFT and TD-DFT calculations. The R2C2PI spectrum recorded at m/z = 131 amu (C10H11) features three additional electronic transitions at 21433, 21369, and 17989 cm(­1), which are assigned to the origin bands of 7-methyl-1-indanyl, 2,3,4-trihydronaphthyl, and methyl-4-ethenylbenzyl radicals, respectively.

11.
Phys Chem Chem Phys ; 16(3): 1161-5, 2014 Jan 21.
Article in English | MEDLINE | ID: mdl-24291817

ABSTRACT

Ultraviolet electronic transitions of the linear carbon chains C6, C7, C8, and C9 were measured in the gas phase by a mass-resolved 1 + 1 resonant two-photon ionization technique using a picosecond laser. Broad absorptions with band maxima at 230.2 and 259.0 nm are identified as N(3)Σ(u)(-) - X(3)Σ(g)(-) (N > 3) transition of C6 and C8, respectively. Based on calculated Franck-Condon intensities, the band maxima are identified as origin bands. An upper limit of 30 ps is determined for the N(3)Σ(u)(-) excited state lifetime of C6. The (1)Σ(u)(+)- X(1)Σ(g)(+) transition with band maximum at 238.5 nm was observed for C7 and at 279.0 nm for C9. The proposition that intramolecular processes in the excited electronic states of carbon chains can lead to broadening as in the diffuse interstellar absorptions is experimentally demonstrated.

12.
Chemphyschem ; 12(11): 2131-7, 2011 Aug 01.
Article in English | MEDLINE | ID: mdl-21648045

ABSTRACT

We report on the characterization of dibenzo[cde,opq]rubicene (C(30)H(14)). The molecule was studied in solution at room temperature with absorption spectroscopy in the visible (vis) and ultraviolet (UV) wavelength ranges, and with emission spectroscopy. The infrared (IR), visible, ultraviolet, and vacuum ultraviolet (VUV) absorption spectra of a thin film were measured also at room temperature. In addition, the UV/vis absorption spectrum was measured at cryogenic temperatures using the matrix isolation spectroscopy technique. The interpretation of spectra was supported by theoretical calculations based on semiempirical and ab initio models, as well as on density functional theory. Finally, the results of the laboratory study were compared with interstellar spectra.

13.
J Chem Phys ; 131(20): 204311, 2009 Nov 28.
Article in English | MEDLINE | ID: mdl-19947684

ABSTRACT

Absorption spectra of hexa-peri-hexabenzocoronene isolated in rare-gas matrices are reported for the wavelength range between 200 and 500 nm. Measurements were carried out in neon and in argon at 5.8 and 12.0 K, respectively. Calculations based on semiempirical models and on density-functional theory were performed to assign the observed features. The electronically excited states involved in Clar's alpha- and p-bands are identified as S(1)(B(2u)) and S(2)(B(1u)), respectively. Although the upper state associated with the beta-band is found to be a (1)E(1u) state, it remains undetermined whether it is S(3) or S(4). Structures in the beta-band are interpreted as resulting from the interaction between the (1)E(1u) state and the e(2g) vibrational manifold of S(2)(B(1u)). The new measurements are used to narrow down the wavelength ranges where the bands of hexa-peri-hexabenzocoronene should be found in the gas phase. A previous estimate of the interstellar abundance of this polycyclic aromatic hydrocarbon is discussed.

14.
Chemphyschem ; 9(14): 2085-91, 2008 Oct 06.
Article in English | MEDLINE | ID: mdl-18798213

ABSTRACT

The spectroscopic characterization of corannulene (C(20)H(10)) is carried out by several techniques. The high purity of the material synthesized for this study was confirmed by gas chromatography-mass spectrometry (GC-MS). During a high-performance liquid chromatography (HPLC) process, the absorption spectrum of corannulene in the ultraviolet (UV) and visible (vis) ranges is obtained. The infrared (IR) absorption spectrum is measured in CsI pellets, and the Raman scattering spectrum is recorded for pure crystal grains. In addition to room temperature measurements, absorption spectroscopy in an argon matrix at 12 K is also performed in the IR and UV/Vis ranges. The experimental spectra are compared with theoretical Raman and IR spectra and with calculated electronic transitions. All calculations are based on the density functional theory (DFT), either normal or time-dependent (TDDFT). Our results are discussed in view of their possible application in the search for corannulene in the interstellar medium.

SELECTION OF CITATIONS
SEARCH DETAIL
...