Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Chem ; 55(7): 1337-46, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19406918

ABSTRACT

BACKGROUND: The presence of aberrantly methylated SEPT9 DNA in plasma is highly correlated with the occurrence of colorectal cancer. We report the development of a new SEPT9 biomarker assay and its validation in case-control studies. The development of such a minimally invasive blood-based test may help to reduce the current gap in screening coverage. METHODS: A new SEPT9 DNA methylation assay was developed for plasma. The assay comprised plasma DNA extraction, bisulfite conversion of DNA, purification of bisulfite-converted DNA, quantification of converted DNA by real-time PCR, and measurement of SEPT9 methylation by real-time PCR. Performance of the SEPT9 assay was established in a study of 97 cases with verified colorectal cancer and 172 healthy controls as verified by colonoscopy. Performance based on predetermined algorithms was validated in an independent blinded study with 90 cases and 155 controls. RESULTS: The SEPT9 assay workflow yielded 1.9 microg/L (CI 1.3-3.0) circulating plasma DNA following bisulfite conversion, a recovery of 45%-50% of genomic DNA, similar to yields in previous studies. The SEPT9 assay successfully identified 72% of cancers at a specificity of 93% in the training study and 68% of cancers at a specificity of 89% in the testing study. CONCLUSIONS: Circulating methylated SEPT9 DNA, as measured in the new (m)SEPT9 assay, is a valuable biomarker for minimally invasive detection of colorectal cancer. The new assay is amenable to automation and standardized use in the clinical laboratory.


Subject(s)
Biomarkers, Tumor/blood , Colorectal Neoplasms/diagnosis , DNA/blood , GTP Phosphohydrolases/genetics , Colorectal Neoplasms/blood , Humans , Methylation , Polymerase Chain Reaction , Septins
2.
Vaccine ; 25(35): 6458-73, 2007 Aug 29.
Article in English | MEDLINE | ID: mdl-17651872

ABSTRACT

Gene expression in human peripheral blood mononuclear cells was systematically evaluated following smallpox and yellow fever vaccination, and naturally occurring upper respiratory infection (URI). All three infections were characterized by the induction of many interferon stimulated genes, as well as enhanced expression of genes involved in proteolysis and antigen presentation. Vaccinia infection was also characterized by a distinct expression signature composed of up-regulation of monocyte response genes, with repression of genes expressed by B and T-cells. In contrast, the yellow fever host response was characterized by a suppression of ribosomal and translation factors, distinguishing this infection from vaccinia and URI. No significant URI-specific signature was observed, perhaps reflecting greater heterogeneity in the study population and etiological agents. Taken together, these data suggest that specific host gene expression signatures may be identified that distinguish one or a small number of virus agents.


Subject(s)
Gene Expression Profiling , Monocytes/metabolism , Monocytes/virology , Respiratory Tract Infections/genetics , Vaccination , Vaccinia/genetics , Viral Vaccines/immunology , Yellow Fever/genetics , Adolescent , Adult , DNA, Complementary/biosynthesis , DNA, Complementary/genetics , Data Interpretation, Statistical , Female , Humans , Male , Oligonucleotide Array Sequence Analysis , RNA, Viral/biosynthesis , RNA, Viral/genetics , Regression Analysis , Respiratory Tract Infections/virology , Smallpox Vaccine/immunology , Vaccinia/virology , Vaccinia virus/immunology , Yellow Fever/virology , Yellow Fever Vaccine/immunology , Yellow fever virus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...