Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Odontology ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954152

ABSTRACT

This study had the aim of examining the relationships between variations in estrogen levels resulting from ovariectomy, and estrogen hormone replacement therapy (HRT) in rats subjected to an orofacial inflammatory pain model. Eighty adult female Wistar rats were initially divided into 2 groups: Sham or ovariectomy (OVX-D1). Seven days later (D7), the rats were subjected to an unilateral infiltration of Freund's Complete Adjuvant (CFA) or saline solution into the right temporomandibular joint (TMJ). Then, rats received 17ß-estradiol (28 µg/kg/day) or placebo for 21 days (D10-D31). Nociception was evaluated by the von Frey (VF) and the Hot Plate (HP) tests, and depressive-like behavior by the Forced Swimming (FS) test. On D32 all rats were euthanized and serum, hippocampus and brainstem were collected. The CFA groups presented a mechanical hyperalgesia until day 21 (p ≤ 0.05). No differences were observed among groups in the HP (p = 0.735), and in the immobility and swimming time of the FS (p = 0.800; p = 0.998, respectively). In the brainstem, there was a significant difference in the TNF-ɑ levels (p = 0.043), and a marginal significant difference in BDNF levels (p = 0.054), without differences among groups in the hippocampal BDNF and TNF-ɑ levels (p = 0.232; p = 0.081, respectively). In conclusion, the hormone replacement therapy did not alleviate orofacial pain in ovariectomized rats. However, there is a decrease in brainstem TNF-ɑ levels in the animals submitted to both models, which was partially reverted by HRT.

2.
Neurosci Lett ; 813: 137407, 2023 09 14.
Article in English | MEDLINE | ID: mdl-37499743

ABSTRACT

This study evaluated the effects of previous exposure to Transcranial Direct Current Stimulation (tDCS) on nociceptive, neuroinflammatory, and neurochemical parameters, in rats subjected to an incisional pain model. Forty adult male Wistar rats (60 days old; weighing âˆ¼ 250 g) were divided into five groups: 1. control (C); 2. drugs (D); 3. surgery (S); 4. surgery + sham-tDCS (SsT) and 5. surgery + tDCS (ST). Bimodal tDCS (0.5 mA) was applied for 20 min/day/8 days before the incisional model. Mechanical allodynia (von Frey) was evaluated at different time points after surgery. Cytokines and BDNF levels were evaluated in the cerebral cortex, hippocampus, brainstem, and spinal cord. Histology and activity of myeloperoxidase (MPO) and N-acetyl-ß-D-glucosaminidase (NAGase) were evaluated in the surgical lesion sites in the right hind paw. The results demonstrate that the surgery procedure increased BDNF and IL-6 levels in the spinal cord levels in the hippocampus, and decreased IL-1ß and IL-6 levels in the cerebral cortex, IL-6 levels in the hippocampus, and IL-10 levels in the brainstem and hippocampus. In addition, preemptive tDCS was effective in controlling postoperative pain, increasing BDNF, IL-6, and IL-10 levels in the spinal cord and brainstem, increasing IL-1ß in the spinal cord, and decreasing IL-6 levels in the cerebral cortex and hippocampus, IL-1ß and IL-10 levels in the hippocampus. Preemptive tDCS also contributes to tissue repair, preventing chronic inflammation, and consequent fibrosis. Thus, these findings imply that preemptive methods for postoperative pain management should be considered an interesting pain management strategy, and may contribute to the development of clinical applications for tDCS in surgical situations.


Subject(s)
Analgesia , Transcranial Direct Current Stimulation , Rats , Male , Animals , Transcranial Direct Current Stimulation/methods , Rats, Wistar , Interleukin-10 , Pain Management , Brain-Derived Neurotrophic Factor , Interleukin-6 , Pain, Postoperative/prevention & control , Inflammation/prevention & control
3.
Behav Neurosci ; 135(5): 654-667, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34383514

ABSTRACT

The impact of stress on health and well-being is determined by the ability of an individual to cope with challenges imposed by the stressor. Animals exposed to social defeat stress show different patterns of response during confrontations, leading to distinct stress-induced consequences. Using an established resident-intruder paradigm, we explored the outcomes of adopting active or passive coping strategies during a social defeat protocol over peripheral and central nervous system (CNS) levels of inflammatory cytokines, growth factors, glucocorticoid, and oxidative stress markers in male Wistar rats. Animals that presented short latency to assume a defeated posture during confrontation-considered as susceptible to stress-exhibited increased levels of brain-derived neurotrophic factor (BDNF) in the amygdala (AMY) and in the bed nucleus of the stria terminalis (BNST), and decreased lipid peroxidation in the CNS, suggesting changes in antioxidative defenses as well as stress-induced neuroadaptations. On the other hand, animals with longer latencies to assume a submissive posture-considered to be resilient to stress-presented lower levels of CNS BDNF compared to short-latency animals and decreased enzymatic antioxidant defenses in the CNS in comparison to controls, which might indicate an increased risk of central oxidative damage. From the results, behavioral reactivity cannot be considered a predictor of success in responding to stress; however, the findings of this study reinforce the idea that exposure to stress has no predetermined negative effects. (PsycInfo Database Record (c) 2021 APA, all rights reserved).


Subject(s)
Social Defeat , Stress, Psychological , Adaptation, Psychological , Animals , Male , Oxidative Stress , Rats , Rats, Sprague-Dawley , Rats, Wistar
4.
Trends Psychiatry Psychother ; 42(2): 195-206, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32696892

ABSTRACT

Introduction In addition to their role in regulation of the hypothalamic-pituitary-adrenal-axis, corticotropin-releasing factor (CRF) and its related peptides, the urocortins, are important mediators of physiological and pathophysiological processes of the central nervous, cardiovascular, gastrointestinal, immune, endocrine, reproductive, and skin systems. Altered regulation of CRF-mediated adaptive responses to various stressful stimuli disrupts healthy function and might confer vulnerability to several disorders, including depression and anxiety. Methodology This narrative review was conducted through search and analysis of studies retrieved from online databases using a snowball method. Results This review covers aspects beginning with the discovery of CRF, CRF binding protein and their actions via interaction with CRF receptors type 1 and type 2. These are surface plasma membrane receptors, activation of which is associated with conformational changes and interaction with a variety of G-proteins and signaling pathways. We also reviewed the pharmacology and mechanisms of the receptor signaling modulatory activity of these receptors. Conclusion This review compiles and presents knowledge regarding the CRFergic system, including CRF related peptides, CRF binding protein, and CRF receptors, as well as some evidence that is potentially indicative of the biological roles of these entities in several physiological and pathophysiological processes.


Subject(s)
Corticotropin-Releasing Hormone/physiology , Hypothalamo-Hypophyseal System/metabolism , Receptors, Corticotropin-Releasing Hormone/physiology , Signal Transduction/physiology , Stress, Psychological/metabolism , Animals , Corticotropin-Releasing Hormone/metabolism , Humans , Receptors, Corticotropin-Releasing Hormone/metabolism
5.
Trends psychiatry psychother. (Impr.) ; 42(2): 195-206, Apr.-June 2020. tab, graf
Article in English | LILACS | ID: biblio-1139820

ABSTRACT

Abstract Introduction In addition to their role in regulation of the hypothalamic-pituitary-adrenal-axis, corticotropin-releasing factor (CRF) and its related peptides, the urocortins, are important mediators of physiological and pathophysiological processes of the central nervous, cardiovascular, gastrointestinal, immune, endocrine, reproductive, and skin systems. Altered regulation of CRF-mediated adaptive responses to various stressful stimuli disrupts healthy function and might confer vulnerability to several disorders, including depression and anxiety. Methodology This narrative review was conducted through search and analysis of studies retrieved from online databases using a snowball method. Results This review covers aspects beginning with the discovery of CRF, CRF binding protein and their actions via interaction with CRF receptors type 1 and type 2. These are surface plasma membrane receptors, activation of which is associated with conformational changes and interaction with a variety of G-proteins and signaling pathways. We also reviewed the pharmacology and mechanisms of the receptor signaling modulatory activity of these receptors. Conclusion This review compiles and presents knowledge regarding the CRFergic system, including CRF related peptides, CRF binding protein, and CRF receptors, as well as some evidence that is potentially indicative of the biological roles of these entities in several physiological and pathophysiological processes.


Subject(s)
Animals , Humans , Stress, Psychological/metabolism , Corticotropin-Releasing Hormone/physiology , Signal Transduction/physiology , Receptors, Corticotropin-Releasing Hormone/physiology , Hypothalamo-Hypophyseal System/metabolism , Corticotropin-Releasing Hormone/metabolism , Receptors, Corticotropin-Releasing Hormone/metabolism
6.
Behav Brain Res ; 357-358: 104-110, 2019 01 14.
Article in English | MEDLINE | ID: mdl-29330004

ABSTRACT

Social stress is recognized to promote the development of neuropsychiatric and mood disorders. Corticotropin releasing factor (CRF) is an important neuropeptide activated by social stress, and it contributes to neural and behavioral adaptations, as indicated by impaired social interactions and anhedonic effects. Few studies have focused on the role of the CRF binding protein (CRFBP), a component of the CRF system, and its activity in the bed nucleus of stria terminalis (BNST), a limbic structure connecting amygdala and hypothalamus. In this study, animals' preference for sweet solutions was examined as an index of stress-induced anhedonic responses in Wistar rats subjected to four brief intermittent episodes of social defeat. Next, social approach was assessed after local infusions of the CRFBP antagonist, CRF fragment 6-33 (CRF6-33) into the BNST. The experience of brief episodes of social defeat impaired social approach behaviors in male rats. However, intra-BNST CRF6-33 infusions restored social approach in stressed animals to the levels of non-stressed rats. CRF6-33 acted selectively on social interaction and did not alter general exploration in nether stressed nor non-stressed rats. These findings suggest that BNST CRFBP is involved in the modulation of anxiety-like responses induced by social stress.


Subject(s)
Corticotropin-Releasing Hormone/therapeutic use , Hormone Antagonists/therapeutic use , Septal Nuclei/drug effects , Social Behavior Disorders/drug therapy , Social Behavior Disorders/etiology , Stress, Psychological/complications , Animals , Disease Models, Animal , Dose-Response Relationship, Drug , Male , Peptide Fragments/therapeutic use , Rats , Rats, Wistar , Septal Nuclei/metabolism
7.
Front Behav Neurosci ; 11: 207, 2017.
Article in English | MEDLINE | ID: mdl-29114211

ABSTRACT

Hyper activation of the neuroimmune system is strongly related to the development of neuropsychiatric disorders. Psychosocial stress has been postulated to play an important role in triggering anxiety and major depression. In preclinical models, there is mounting evidence that social defeat stress activates microglial cells in the central nervous system. This type of stress could be one of the major factors in the development of these psychopathologies. Here, we reviewed the most recent literature on social defeat and the associated immunological reactions. We focused our attention on microglial cells and kept the effect of social defeat over microglia separate from the effect of this stressor on other immune cells and the influence of peripheral immune components in priming central immune reactions. Furthermore, we considered how social defeat stress affects microglial cells and the consequent development of anxiety- and depressive-like states in preclinical studies. We highlighted evidence for the negative impact of the over-activation of the neuroimmune system, especially by the overproduction of pro-inflammatory mediators and cytotoxins. Overproduction of these molecules may cause cellular damage and loss or decreased function of neuronal activity by excessively pruning synaptic connections that ultimately contribute to the development of anxiety- and depressive-like states.

8.
J Neurosci ; 36(14): 4093-105, 2016 Apr 06.
Article in English | MEDLINE | ID: mdl-27053215

ABSTRACT

Intermittent social defeat stress escalates later cocaine self-administration. Reward and stress both activate ventral tegmental area (VTA) dopamine neurons, increasing downstream extracellular dopamine concentration in the medial prefrontal cortex and nucleus accumbens. The stress neuropeptide corticotropin releasing factor (CRF) and its receptors (CRF-R1, CRF-R2) are located in the VTA and influence dopaminergic activity. These experiments explore how CRF release and the activation of its receptors within the VTA both during and after stress influence later cocaine self-administration in rats.In vivo microdialysis of CRF in the VTA demonstrated that CRF is phasically released in the posterior VTA (pVTA) during acute defeat, but, with repeated defeat, CRF is recruited into the anterior VTA (aVTA) and CRF tone is increased in both subregions. Intra-VTA antagonism of CRF-R1 in the pVTA and CRF-R2 in the aVTA during each social defeat prevented escalated cocaine self-administration in a 24 h "binge." VTA CRF continues to influence cocaine seeking in stressed animals long after social defeat exposure. Unlike nonstressed controls, previously stressed rats show significant cocaine seeking after 15 d of forced abstinence. Previously stressed rats continue to express elevated CRF tone within the VTA and antagonism of pVTA CRF-R1 or aVTA CRF-R2 reverses cocaine seeking. In conclusion, these experiments demonstrate neuroadaptive changes in tonic and phasic CRF with repeated stress, that CRF release during stress may contribute to later escalated cocaine taking, and that persistently elevated CRF tone in the VTA may drive later cocaine seeking through increased activation of pVTA CRF-R1 and aVTA CRF-R2. SIGNIFICANCE STATEMENT: Corticotropin releasing factor (CRF) within the ventral tegmental area (VTA) has emerged as a likely candidate molecule underlying the fundamental link between stress history and escalated drug self-administration. However, the nature of CRF release in the VTA during acute and repeated stress, as well as its role in enduring neuroadaptations driving later drug taking and seeking, are poorly understood. These experiments explore how CRF is released and interacts with its receptors in specific regions of the VTA both during and after stress to fuel later escalated cocaine taking and seeking behavior. Understanding these acute and persistent changes to the VTA CRF system may lead to better therapeutic interventions for addiction.


Subject(s)
Cocaine-Related Disorders/metabolism , Cocaine-Related Disorders/psychology , Corticotropin-Releasing Hormone/metabolism , Social Environment , Stress, Psychological/metabolism , Stress, Psychological/psychology , Ventral Tegmental Area/metabolism , Animals , Drug-Seeking Behavior , Male , Microdialysis , Rats , Rats, Long-Evans , Receptors, Corticotropin-Releasing Hormone/metabolism , Self Administration , Substance Withdrawal Syndrome/metabolism , Substance Withdrawal Syndrome/psychology
SELECTION OF CITATIONS
SEARCH DETAIL
...