Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
J Cancer Res Clin Oncol ; 150(7): 367, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39052171

ABSTRACT

AIM: Endometrial cancer (EC) is heterogeneous with respect to epidemiology, clinical course, histopathology and tumor biology. Recently, The Cancer Genome Atlas (TCGA) network has identified four molecular subtypes with distinct clinical courses by an integrated multi-omics approach. These subtypes are of critical importance in the clinical management of EC. However, determination of TCGA molecular subtypes requires a complex methodological approach that is resource intensive and difficult to implement in diagnostic routine procedures. In this context, Talhouk et al. reported the precise determination of modified subtypes based on molecular surrogates obtained by a two-method approach comprising immunohistochemistry and DNA-sequence analysis (Proactive Molecular Risk Classifier for Endometrial Cancer; ProMisE). In this study, we aimed to identify EC molecular subtypes in analogy to TCGA and ProMisE applying an innovative whole exome-sequencing (WES) based single-method approach. METHODS: WES was performed in a cohort comprising N = 114 EC patients. WES data were analyzed using the oncology treatment decision support software MH Guide (Molecular Health, Heidelberg, Germany) and EC molecular subtypes in analogy to TCGA and ProMisE were determined. Results from both classifications were compared regarding their prognostic values using overall survival and progression-free survival analyses. RESULTS: Applying a single-method WES-approach, EC molecular subtypes analogue to TCGA and ProMisE were identified in the study cohort. The surrogate marker-analogue classification precisely identified high-risk and low-risk EC, whereas the TCGA-analogue classification failed to obtain significant prognostic values in this regard. CONCLUSION: Our data demonstrate that determination of EC molecular subtypes analogue to TCGA and ProMisE is feasible by using a single-method WES approach. Within our EC cohort, prognostic implications were only reliably provided by applying the surrogate marker-analogue approach. Designation of molecular subtypes in EC will be increasingly important in routine clinical practice. Thus, the single-method WES approach provides an important simple tool to tailor therapeutic decisions in EC.


Subject(s)
Endometrial Neoplasms , Exome Sequencing , Humans , Endometrial Neoplasms/genetics , Endometrial Neoplasms/pathology , Endometrial Neoplasms/classification , Female , Exome Sequencing/methods , Aged , Middle Aged , Biomarkers, Tumor/genetics , Prognosis , Aged, 80 and over , Adult
2.
Cancers (Basel) ; 15(7)2023 Mar 30.
Article in English | MEDLINE | ID: mdl-37046713

ABSTRACT

BACKGROUND: The Cancer Genome Atlas (TCGA) network (United States National Cancer Institute) identified four molecular endometrial cancer (EC) subtypes using an extensive multi-method approach. The aim of this study was to determine the four TCGA EC molecular subtypes using a single-method whole-exome sequencing (WES)-based approach provided by MH Guide (Molecular Health, Heidelberg, Germany). METHODS: WES and clinical data of n = 232 EC patients were obtained from TCGA. The four TCGA EC molecular subtypes designated as (i) Mutated Polymerase ε (POLE), (ii) Microsatellite Instability (MSI), (iii) Copy Number (CN) low and, (iv) CN-high were determined using the MH Guide software. The prognostic value of the subtypes determined by MH Guide were compared with the TCGA classification. RESULTS: Analysis of WES data using the MH Guide software led to the precise identification of the four EC molecular subtypes analogous to the TCGA classification. Both approaches displayed high concordance in terms of prognostic significance. CONCLUSIONS: The multi-method-based TCGA EC molecular subtypes can reliably be reproduced by the single-method-based MH Guide approach. The easy-to-implement single-method MH Guide approach represents a promising diagnostic tool.

3.
Cancer Cell ; 28(5): 610-622, 2015 Nov 09.
Article in English | MEDLINE | ID: mdl-26481148

ABSTRACT

While recombinant human erythropoietin (rhEpo) has been widely used to treat anemia in cancer patients, concerns about its adverse effects on patient survival have emerged. A lack of correlation between expression of the canonical EpoR and rhEpo's effects on cancer cells prompted us to consider the existence of an alternative Epo receptor. Here, we identified EphB4 as an Epo receptor that triggers downstream signaling via STAT3 and promotes rhEpo-induced tumor growth and progression. In human ovarian and breast cancer samples, expression of EphB4 rather than the canonical EpoR correlated with decreased disease-specific survival in rhEpo-treated patients. These results identify EphB4 as a critical mediator of erythropoietin-induced tumor progression and further provide clinically significant dimension to the biology of erythropoietin.


Subject(s)
Breast Neoplasms/genetics , Erythropoietin/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Ovarian Neoplasms/genetics , Receptor, EphB4/genetics , Adult , Aged , Aged, 80 and over , Animals , Blotting, Western , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Disease Progression , Erythropoietin/genetics , Female , Humans , Kaplan-Meier Estimate , MCF-7 Cells , Mice, Inbred C57BL , Mice, Nude , Middle Aged , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Protein Binding/drug effects , Receptor, EphB4/metabolism , Receptors, Erythropoietin/genetics , Receptors, Erythropoietin/metabolism , Recombinant Proteins/pharmacology , Reverse Transcriptase Polymerase Chain Reaction , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Young Adult
4.
Drug Discov Today Technol ; 3(2): 153-61, 2006.
Article in English | MEDLINE | ID: mdl-24980402

ABSTRACT

The co-emergence of microarray technologies with systems oriented approaches to discovery is testament to the technological and conceptual advancements of recent years. By providing a platform for massively parallelized reductionism, microarrays are enabling us to examine the functional features of diverse classes of bio-system components in a contextually meaningful manner. Yet, to provide economic impact, future development of these technologies demands intimate alignment with the goal of producing safer and more efficacious drugs.:

5.
Acta Crystallogr D Biol Crystallogr ; 61(Pt 4): 374-9, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15805591

ABSTRACT

Recombinant sorbitol dehydrogenase (SDH) from Rhodobacter sphaeroides has been crystallized in the absence of the cofactor NAD(H) and its structure determined to 2.4 A resolution using molecular replacement (refined R and R free factors of 18.8 and 23.8%, respectively). As expected from the sequence and shown by the conserved fold, SDH can be assigned to the short-chain dehydrogenase/reductase protein family. The cofactor NAD and the substrate sorbitol have been modelled into the structure and the active-site architecture, which displays the highly conserved catalytic tetrad of Asn-Ser-Tyr-Lys residues, is discussed in relation to the enzyme mechanism. This is the first structure of a bacterial SDH belonging to the SDR family.


Subject(s)
L-Iditol 2-Dehydrogenase/chemistry , Rhodobacter sphaeroides/enzymology , Binding Sites , Crystallography , L-Iditol 2-Dehydrogenase/metabolism , NAD/metabolism , Sorbitol/metabolism
6.
Nat Cell Biol ; 6(2): 97-105, 2004 Feb.
Article in English | MEDLINE | ID: mdl-14743216

ABSTRACT

Signal transduction pathways are modular composites of functionally interdependent sets of proteins that act in a coordinated fashion to transform environmental information into a phenotypic response. The pro-inflammatory cytokine tumour necrosis factor (TNF)-alpha triggers a signalling cascade, converging on the activation of the transcription factor NF-kappa B, which forms the basis for numerous physiological and pathological processes. Here we report the mapping of a protein interaction network around 32 known and candidate TNF-alpha/NF-kappa B pathway components by using an integrated approach comprising tandem affinity purification, liquid-chromatography tandem mass spectrometry, network analysis and directed functional perturbation studies using RNA interference. We identified 221 molecular associations and 80 previously unknown interactors, including 10 new functional modulators of the pathway. This systems approach provides significant insight into the logic of the TNF-alpha/NF-kappa B pathway and is generally applicable to other pathways relevant to human disease.


Subject(s)
Drosophila Proteins , NF-kappa B/metabolism , Signal Transduction/physiology , Tumor Necrosis Factor-alpha/metabolism , Animals , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line , Chaperonins , Chromatography, Affinity/methods , Enzyme Activation , HSP90 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/metabolism , Humans , I-kappa B Proteins/isolation & purification , I-kappa B Proteins/metabolism , MAP Kinase Kinase Kinase 3 , MAP Kinase Kinase Kinases/genetics , MAP Kinase Kinase Kinases/metabolism , Macromolecular Substances , Mass Spectrometry/methods , Models, Biological , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , NF-kappa B/genetics , NF-kappa B/isolation & purification , Proteome/analysis , RNA Interference , Receptors, Tumor Necrosis Factor/metabolism , Tacrolimus Binding Proteins/genetics , Tacrolimus Binding Proteins/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/isolation & purification , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL