Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Theranostics ; 14(6): 2560-2572, 2024.
Article in English | MEDLINE | ID: mdl-38646643

ABSTRACT

Management of prostate cancer (PC) might be improved by combining external beam radiotherapy (EBRT) and prostate-specific membrane antigen (PSMA)-targeted radioligand therapy (RLT) with lutetium-177 (177Lu)-labeled PSMA inhibitors. We hypothesized a higher efficacy of the combination due to augmentation of the radiation dose to the tumor and interactions of EBRT with PSMA expression potentially increasing radiopharmaceutical uptake. Therefore, this study analyzed the influence of radiation on PSMA expression levels in vitro. The results were translated to evaluate the efficacy of the combination of photon EBRT and [177Lu]Lu-PSMA-617 in a murine PC xenograft model. Finally, a clinical case report on a combined elective field EBRT with RLT dose escalation illustrates a proof-of-concept. Methods: PSMA gene and protein expression were assessed in human PSMA-overexpressing LNCaP cells after irradiation using reverse transcription quantitative polymerase chain reaction (RT-qPCR), flow cytometry and On-Cell Western assays. In the in vivo therapy study, LNCaP tumor-bearing BALB/c nu/nu mice were irradiated once with 2 Gy X-ray EBRT and injected with 40 MBq [177Lu]Lu-PSMA-617 after 4 h or received single or no treatment (n = 10 each). Tumor-absorbed doses by [177Lu]Lu-PSMA-617 were calculated according to the Medical Internal Radiation Dosimetry (MIRD) formalism after deriving time-activity curves using a gamma probe. An exemplified patient case is demonstrated where fractionated EBRT (54 Gy to prostate; 45 Gy to pelvic lymphatics) and three cycles of [177Lu]Lu-PSMA-617 (3.4-6.0 GBq per cycle) were sequentially combined under concurrent androgen deprivation for treating locally advanced PC. Results: At 4 h following irradiation with 2-8 Gy, LNCaP cells displayed a PSMA protein upregulation by around 18% relative to non-irradiated cells, and a stronger upregulation on mRNA level (up to 2.6-fold). This effect was reversed by 24 h when PSMA protein levels were downregulated by up to 22%. Mice treated with the combination therapy showed significantly improved outcomes regarding tumor control and median survival (p < 0.0001) as compared to single or no treatment. Relative to monotherapy with PSMA-RLT or EBRT, the tumor doubling time was prolonged 1.7- or 2.7-fold and the median survival was extended by 24% or 60% with the combination, respectively. Additionally, tumors treated with EBRT exhibited a 14% higher uptake of the radiopharmaceutical as evident from the calculated tumor-absorbed dose, albeit with high variability in the data. Concerning the patient case, the tri-modality treatment was well tolerated and the patient responded with a long-lasting complete biochemical remission for five years following end of PSMA-RLT. The patient then developed a biochemical relapse with oligo-recurrent disease on follow-up imaging. Conclusion: The present preclinical and clinical data demonstrate that the combination of EBRT with dose escalation by PSMA-RLT improves tumor control and potentially prolongs survival. This may pave the way for further clinical investigations of this approach to explore the curative potential of the combination therapy.


Subject(s)
Dipeptides , Heterocyclic Compounds, 1-Ring , Lutetium , Prostate-Specific Antigen , Prostatic Neoplasms , Radioisotopes , Radiopharmaceuticals , Animals , Male , Prostatic Neoplasms/radiotherapy , Prostatic Neoplasms/metabolism , Humans , Lutetium/therapeutic use , Lutetium/pharmacology , Heterocyclic Compounds, 1-Ring/therapeutic use , Heterocyclic Compounds, 1-Ring/pharmacology , Dipeptides/pharmacology , Dipeptides/therapeutic use , Cell Line, Tumor , Mice , Radiopharmaceuticals/therapeutic use , Radiopharmaceuticals/pharmacology , Radiopharmaceuticals/pharmacokinetics , Radioisotopes/therapeutic use , Radioisotopes/pharmacology , Mice, Inbred BALB C , Mice, Nude , Glutamate Carboxypeptidase II/metabolism , Glutamate Carboxypeptidase II/genetics , Xenograft Model Antitumor Assays , Antigens, Surface/metabolism , Antigens, Surface/genetics
2.
Article in English | MEDLINE | ID: mdl-38636702

ABSTRACT

BACKGROUND: Reserpine (RES), a Vesicular Monoamine Transporter 2 (VMAT2) inhibitor agent, has been used in preclinical research for many years to create animal models for depression and to test experimental antidepressant strategies. Nevertheless, evidence of the potential use and validity of RES as a chronic pharmacological model for depression is lacking, and there are no comprehensive studies of the behavioral effects in conjunction with molecular outcomes. METHODS: Experiment 1. Following baseline behavior testing sensitive to depression-like phenotype and locomotion (Phase 1), 27 Sprague-Dawley (SD) rats received i.p. either vehicle solution (0.0 mg/kg), low (0.2 mg/kg) or high (0.8 mg/kg) RES dose for 20 days using a pre-determined schedule and reassessed for behavioral phenotypes (Phase 2). After 10 days washout period, and a final behavioral assessment (Phase 3), the brains were collected 16 days after the last injection for mRNA-expression assessment. Experiment 2. In a similar timetable as in Experiment 1 but without the behavioral testing, 12 SD rats underwent repetitive dopamine D2/3 receptor PET scanning with [18F]DMFP following each Phase. The binding potential (BPND) of [18F]DMFP was quantified by kinetic analysis as a marker of striatal D2/3R availability. Weight and welfare were monitored throughout the study. RESULTS: Significant, dose-dependent weight loss and behavioral deficits including both motor (hypo-locomotion) and non-motor behavior (anhedonia, mild anxiety and reduced exploration) were found for both the low and high dose groups with significant decrease in D2R mRNA expression in the accumbal region for the low RES group after Phase 3. Both RES treated groups showed substantial increase in [18F]DMFP BPND (in line with dopamine depletion) during Phase 2 and 3 compared to baseline and Controls. CONCLUSIONS: The longitudinal design of the study demonstrated that chronic RES administration induced striatal dopamine depletion that persisted even after the wash-out period. However, the behavior phenotype observed were transient. The data suggest that RES administration can induce a rodent model for depression with mild face validity.

3.
J Nucl Med ; 65(4): 593-599, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38423784

ABSTRACT

The application of prostate-specific membrane antigen (PSMA)-targeted α-therapy is a promising alternative to ß--particle-based treatments. 211At is among the potential α-emitters that are favorable for this concept. Herein, 211At-based PSMA radiopharmaceuticals were designed, developed, and evaluated. Methods: To identify a 211At-labeled lead, a surrogate strategy was applied. Because astatine does not exist as a stable nuclide, it is commonly replaced with iodine to mimic the pharmacokinetic behavior of the corresponding 211At-labeled compounds. To facilitate the process of structural design, iodine-based candidates were radiolabeled with the PET radionuclide 68Ga to study their preliminary in vitro and in vivo properties before the desired 211At-labeled lead compound was formed. The most promising candidate from this evaluation was chosen to be 211At-labeled and tested in biodistribution studies. Results: All 68Ga-labeled surrogates displayed affinities in the nanomolar range and specific internalization in PSMA-positive LNCaP cells. PET imaging of these compounds identified [68Ga]PSGa-3 as the lead compound. Subsequently, [211At]PSAt-3-Ga was synthesized in a radiochemical yield of 35% and showed tumor uptake of 19 ± 8 percentage injected dose per gram of tissue (%ID/g) at 1 h after injection and 7.6 ± 2.9 %ID/g after 24 h. Uptake in off-target tissues such as the thyroid (2.0 ± 1.1 %ID/g), spleen (3.0 ± 0.6 %ID/g), or stomach (2.0 ± 0.4 %ID/g) was low, indicating low in vivo deastatination of [211At]PSAt-3-Ga. Conclusion: The reported findings support the use of iodine-based and 68Ga-labeled variants as a convenient strategy for developing astatinated compounds and confirm [211At]PSAt-3 as a promising radiopharmaceutical for targeted α-therapy.


Subject(s)
Iodine , Prostatic Neoplasms , Male , Humans , Gallium Radioisotopes , Tissue Distribution , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/radiotherapy , Prostatic Neoplasms/pathology , Positron-Emission Tomography/methods , Glutamate Carboxypeptidase II/metabolism , Antigens, Surface/metabolism , Radiopharmaceuticals/pharmacokinetics , Cell Line, Tumor
4.
Pharmaceuticals (Basel) ; 15(3)2022 Feb 22.
Article in English | MEDLINE | ID: mdl-35337061

ABSTRACT

The development of PSMA-targeting low-molecular-weight hybrid molecules aims at advancing preoperative imaging and accurate intraoperative fluorescence guidance for improved diagnosis and therapy of prostate cancer. In hybrid probe design, the major challenge is the introduction of a bulky dye to peptidomimetic core structures without affecting tumor-targeting properties and pharmacokinetic profiles. This study developed a novel class of PSMA-targeting hybrid molecules based on the clinically established theranostic agent PSMA-617. The fluorescent dye-bearing candidates of the strategically designed molecule library were evaluated in in vitro assays based on their PSMA-binding affinity and internalization properties to identify the most favorable hybrid molecule composition for the installation of a bulky dye. The library's best candidate was realized with IRDye800CW providing the lead compound. Glu-urea-Lys-2-Nal-Chx-Lys(IRDye800CW)-DOTA (PSMA-927) was investigated in an in vivo proof-of-concept study, with compelling performance in organ distribution studies, PET/MRI and optical imaging, and with a strong PSMA-specific tumor uptake comparable to that of PSMA-617. This study provides valuable insights about the design of PSMA-targeting low-molecular-weight hybrid molecules, which enable further advances in the field of peptidomimetic hybrid molecule development.

SELECTION OF CITATIONS
SEARCH DETAIL
...