Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
Add more filters










Publication year range
1.
Biophys J ; 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37752702

ABSTRACT

The properties of a potentiator are typically evaluated by measuring its ability to enhance the magnitude of the control response. Analysis of the ability of drugs to potentiate responses from receptor channels takes place in the context of particular models to extract parameters for functional effects. In the often-used coagonist model, the agonist generating control activity and the potentiator enhancing the control activity make additive energetic contributions to stabilize the active state of the receptor. The energetic contributions are fixed and, once known, enable calculation of predicted receptor behavior at any concentration combination of agonist and potentiator. Here, we have examined the applicability of the coagonist model by measuring the relationship between the magnitude of receptor potentiation and the level of background activity. Ternary αßγ GABAA receptors were activated by GABA or the allosteric agonist propofol, or by a gain-of-function mutation, and etiocholanolone- or propofol-mediated potentiation of peak responses was measured. We show that the free energy change contributed by the modulators etiocholanolone or propofol is reduced at higher levels of control activity, thereby being in disagreement with basic principles of the coagonist model. Possible mechanisms underlying this discrepancy are discussed.

2.
Mol Pharmacol ; 101(2): 68-77, 2022 02.
Article in English | MEDLINE | ID: mdl-34853153

ABSTRACT

The GABAA receptor is inhibited by the endogenous sulfated steroids pregnenolone sulfate (PS) and dehydroepiandrosterone sulfate (DHEAS). It has been proposed in previous work that these steroids act by enhancing desensitization of the receptor. Here, we have investigated the modulatory effects of the steroids on the human α1ß3γ2L GABAA receptor. Using electrophysiology and quantitative model-based data analysis, we show that exposure to the steroid promotes occupancy of a nonconducting state that retains high affinity to the transmitter but whose properties differ from those of the classic, transmitter-induced desensitized state. From the analysis of the inhibitory actions of two combined steroids, we infer that PS and DHEAS act through shared or overlapping binding sites. SIGNIFICANCE STATEMENT: Previous work has proposed that sulfated neurosteroids inhibit the GABAA receptor by enhancing the rate of entry into the desensitized state. This study shows that the inhibitory steroids pregnenolone sulfate and dehydroepiandrosterone sulfate act through a common interaction site by stabilizing a distinct nonconducting state.


Subject(s)
Dehydroepiandrosterone Sulfate/pharmacology , GABA Antagonists/pharmacology , Pregnenolone/pharmacology , Receptors, GABA-A/metabolism , Animals , Dehydroepiandrosterone Sulfate/chemistry , Dose-Response Relationship, Drug , Female , GABA Antagonists/chemistry , Humans , Neurosteroids/chemistry , Neurosteroids/pharmacology , Pregnenolone/chemistry , Protein Stability , Receptors, GABA-A/chemistry , Xenopus laevis
3.
Curr Neuropharmacol ; 20(1): 90-93, 2022.
Article in English | MEDLINE | ID: mdl-34784870

ABSTRACT

BACKGROUND: In electrophysiological experiments, inhibition of a receptor-channel, such as the GABAA receptor, is measured by co-applying an agonist producing a predefined control response with an inhibitor to calculate the fraction of the control response remaining in the presence of the inhibitor. The properties of the inhibitor are determined by fitting the inhibition concentration- response relationship to the Hill equation to estimate the midpoint (IC50) of the inhibition curve Objective: We sought to estimate sensitivity of the fitted IC50 to the level of activity of the control response Methods: The inhibition concentration-response relationships were calculated for models with distinct mechanisms of inhibition. In Model I, the inhibitor acts allosterically to stabilize the resting state of the receptor. In Model II, the inhibitor competes with the agonist for a shared binding site. In Model III, the inhibitor stabilizes the desensitized state. RESULTS: The simulations indicate that the fitted IC50 of the inhibition curve is sensitive to the degree of activity of the control response. In Models I and II, the IC50 of inhibition was increased as the probability of being in the active state (PA) of the control response increased. In Model III, the IC50 of inhibition was reduced at higher PA. CONCLUSION: We infer that the apparent potency of an inhibitor depends on the PA of the control response. While the calculations were carried out using the activation and inhibition properties that are representative of the GABAA receptor, the principles and conclusions apply to a wide variety of receptor- channels.


Subject(s)
Receptors, GABA-A , Binding Sites , Humans , Receptors, GABA-A/metabolism
4.
Front Synaptic Neurosci ; 13: 763411, 2021.
Article in English | MEDLINE | ID: mdl-34867260

ABSTRACT

GABAA receptors (GABAARs) play a crucial role in inhibition in the central nervous system. GABAARs containing the δ subunit mediate tonic inhibition, have distinctive pharmacological properties and are associated with disorders of the nervous system. To explore this receptor sub-class, we recently developed mice with δ-containing receptors rendered resistant to the common non-competitive antagonist picrotoxin (PTX). Resistance was achieved with a knock-in point mutation (T269Y; T6'Y) in the mouse genome. Here we characterize pharmacological and biophysical features of GABAARs containing the mutated subunit to contextualize results from the KI mice. Recombinant receptors containing δ T6'Y plus WT α4 and WT ß2 subunits exhibited 3-fold lower EC50 values for GABA but not THIP. GABA EC50 values in native receptors containing the mutated subunit were in the low micromolar range, in contrast with some published results that have suggested nM sensitivity of recombinant receptors. Rectification properties of δ-containing GABAARs were similar to γ2-containing receptors. Receptors containing δ T6'Y had marginally weaker sensitivity to positive allosteric modulators, likely a secondary consequence of differing GABA sensitivity. Overexpression of δT6'Y in neurons resulted in robust PTX-insensitive IPSCs, suggesting that δ-containing receptors are readily recruited by synaptically released GABA. Overall, our results give context to the use of δ receptors with the T6'Y mutation to explore the roles of δ-containing receptors in inhibition.

5.
Mol Pharmacol ; 100(1): 19-31, 2021 07.
Article in English | MEDLINE | ID: mdl-33958479

ABSTRACT

Prior work employing functional analysis, photolabeling, and X-ray crystallography have identified three distinct binding sites for potentiating steroids in the heteromeric GABAA receptor. The sites are located in the membrane-spanning domains of the receptor at the ß-α subunit interface (site I) and within the α (site II) and ß subunits (site III). Here, we have investigated the effects of mutations to these sites on potentiation of the rat α1ß2γ2L GABAA receptor by the endogenous neurosteroid allopregnanolone (3α5αP). The mutations were introduced alone or in combination to probe the additivity of effects. We show that the effects of amino acid substitutions in sites I and II are energetically additive, indicating independence of the actions of the two steroid binding sites. In site III, none of the mutations tested reduced potentiation by 3α5αP, nor did a mutation in site III modify the effects of mutations in sites I or II. We infer that the binding sites for 3α5αP act independently. The independence of steroid action at each site is supported by photolabeling data showing that mutations in either site I or site II selectively change steroid orientation in the mutated site without affecting labeling at the unmutated site. The findings are discussed in the context of linking energetic additivity to empirical changes in receptor function and ligand binding. SIGNIFICANCE STATEMENT: Prior work has identified three distinct binding sites for potentiating steroids in the heteromeric γ-aminobutyric acid type A receptor. This study shows that the sites act independently and additively in the presence of the steroid allopregnanolone and provide estimates of energetic contributions made by steroid binding to each site.


Subject(s)
Amino Acid Substitution , Pregnanolone/pharmacology , Receptors, GABA-A/chemistry , Animals , Binding Sites , Crystallography, X-Ray , Models, Molecular , Molecular Conformation , Molecular Docking Simulation , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Pregnanolone/chemistry , Rats , Receptors, GABA-A/genetics , Receptors, GABA-A/metabolism
6.
Mol Pharmacol ; 98(4): 303-313, 2020 10.
Article in English | MEDLINE | ID: mdl-32873746

ABSTRACT

Muscimol is a psychoactive isoxazole derived from the mushroom Amanita muscaria and a potent orthosteric agonist of the GABAA receptor. The binding of [3H]muscimol has been used to evaluate the distribution of GABAA receptors in the brain, and studies of modulation of [3H]muscimol binding by allosteric GABAergic modulators such as barbiturates and steroid anesthetics have provided insight into the modes of action of these drugs on the GABAA receptor. It has, however, not been feasible to directly apply interaction parameters derived from functional studies to describe the binding of muscimol to the receptor. Here, we employed the Monod-Wyman-Changeux concerted transition model to analyze muscimol binding isotherms. We show that the binding isotherms from recombinant α1ß3 GABAA receptors can be qualitatively predicted using electrophysiological data pertaining to properties of receptor activation and desensitization in the presence of muscimol. The model predicts enhancement of [3H]muscimol binding in the presence of the steroids allopregnanolone and pregnenolone sulfate, although the steroids interact with distinct sites and either enhance (allopregnanolone) or reduce (pregnenolone sulfate) receptor function. We infer that the concerted transition model can be used to link radioligand binding and electrophysiological data. SIGNIFICANCE STATEMENT: The study employs a three-state resting-active-desensitized model to link radioligand binding and electrophysiological data. We show that the binding isotherms can be qualitatively predicted using parameters estimated in electrophysiological experiments and that the model accurately predicts the enhancement of [3H]muscimol binding in the presence of the potentiating steroid allopregnanolone and the inhibitory steroid pregnenolone sulfate.


Subject(s)
GABA-A Receptor Agonists/pharmacology , Muscimol/pharmacology , Receptors, GABA-A/metabolism , Steroids/pharmacology , Allosteric Regulation/drug effects , Binding Sites , HEK293 Cells , Humans , Multiprotein Complexes/chemistry , Multiprotein Complexes/genetics , Muscimol/chemistry , Pregnanolone/pharmacology , Pregnenolone/pharmacology , Receptors, GABA-A/chemistry , Receptors, GABA-A/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Tritium/chemistry
7.
Mol Pharmacol ; 98(6): 762-769, 2020 12.
Article in English | MEDLINE | ID: mdl-32978327

ABSTRACT

Synaptic GABAA receptors are alternately exposed to short pulses of a high, millimolar concentration of GABA and prolonged periods of low, micromolar concentration of the transmitter. Prior work has indicated that exposure to micromolar concentrations of GABA can both activate the postsynaptic receptors generating sustained low-amplitude current and desensitize the receptors, thereby reducing the peak amplitude of subsequent synaptic response. However, the precise relationship between tonic activation and reduction of peak response is not known. Here, we have measured the effect of prolonged exposure to GABA or the combination of GABA and the neurosteroid allopregnanolone, which was intended to desensitize a fraction of receptors, on a subsequent response to a high concentration of agonist in human α1ß3γ2L receptors expressed in Xenopus oocytes. We show that the reduction in the peak amplitude of the post-exposure test response correlates with the open probability of the preceding desensitizing response. Curve fitting of the inhibitory relationship yielded an IC50 of 12.5 µM and a Hill coefficient of -1.61. The activation and desensitization data were mechanistically analyzed in the framework of a three-state Resting-Active-Desensitized model. Using the estimated affinity, efficacy, and desensitization parameters, we calculated the amount of desensitization that would accumulate during a long (2-minute) application of GABA or GABA plus allopregnanolone. The results indicate that accumulation of desensitization depends on the level of activity rather than agonist or potentiator concentration per se. We estimate that in the presence of 1 µM GABA, approximately 5% of α1ß3γ2L receptors are functionally eliminated because of desensitization. SIGNIFICANCE STATEMENT: We present an analytical approach to quantify and predict the loss of activatable GABAA receptors due to desensitization in the presence of transmitter and the steroid allopregnanolone. The findings indicate that the peak amplitude of the synaptic response is influenced by ambient GABA and that changes in ambient concentrations of the transmitter and other GABAergic agents can modify tonically and phasically activated synaptic receptors in opposite directions.


Subject(s)
GABA-A Receptor Agonists/pharmacology , Receptors, GABA-A/metabolism , Synaptic Potentials/drug effects , Animals , Cells, Cultured , Dose-Response Relationship, Drug , Humans , Oocytes , Patch-Clamp Techniques , Pregnanolone/pharmacology , Recombinant Proteins/metabolism , Time Factors , Xenopus laevis , gamma-Aminobutyric Acid/pharmacology
8.
Mol Pharmacol ; 98(4): 280-291, 2020 10.
Article in English | MEDLINE | ID: mdl-32675382

ABSTRACT

The ρ1 GABAA receptor is prominently expressed in the retina and is present at lower levels in several brain regions and other tissues. Although the ρ1 receptor is insensitive to many anesthetic drugs that modulate the heteromeric GABAA receptor, it maintains a rich and multifaceted steroid pharmacology. The receptor is negatively modulated by 5ß-reduced steroids, sulfated or carboxylated steroids, and ß-estradiol, whereas many 5α-reduced steroids potentiate the receptor. In this study, we analyzed modulation of the human ρ1 GABAA receptor by several neurosteroids, individually and in combination, in the framework of the coagonist concerted transition model. Experiments involving coapplication of two or more steroids revealed that the receptor contains at least three classes of distinct, nonoverlapping sites for steroids, one each for the inhibitory steroids pregnanolone (3α5ßP), 3α5ßP sulfate, and ß-estradiol. The site for 3α5ßP can accommodate the potentiating steroid 5αTHDOC. The findings are discussed with respect to receptor modulation by combinations of endogenous neurosteroids. SIGNIFICANCE STATEMENT: The study describes modulation of the ρ1 GABAA receptor by neurosteroids. The coagonist concerted transition model was used to determine overlap of binding sites for several inhibitory and potentiating steroids.


Subject(s)
Desoxycorticosterone/analogs & derivatives , Neurosteroids/pharmacology , Pregnanolone/pharmacology , Receptors, GABA-A/chemistry , Receptors, GABA-A/metabolism , Xenopus laevis/genetics , Animals , Animals, Genetically Modified , Binding Sites , Desoxycorticosterone/chemistry , Desoxycorticosterone/pharmacology , Drug Synergism , Drug Therapy, Combination , Humans , Models, Molecular , Molecular Structure , Neurosteroids/chemistry , Pregnanolone/chemistry , Receptors, GABA-A/genetics
9.
Sci Rep ; 9(1): 16431, 2019 11 11.
Article in English | MEDLINE | ID: mdl-31712706

ABSTRACT

Pentameric GABAA receptors mediate a large share of CNS inhibition. The γ2 subunit is a typical constituent. At least 11 mutations in the γ2 subunit cause human epilepsies, making the role of γ2-containing receptors in brain function of keen basic and translational interest. How small changes to inhibition may cause brain abnormalities, including seizure disorders, is unclear. In mice, we perturbed fast inhibition with a point mutation T272Y (T6'Y in the second membrane-spanning domain) to the γ2 subunit. The mutation imparts resistance to the GABAA receptor antagonist picrotoxin, allowing verification of mutant subunit incorporation. We confirmed picrotoxin resistance and biophysical properties in recombinant receptors. T6'Y γ2-containing receptors also exhibited faster deactivation but unaltered steady-state properties. Adult T6'Y knockin mice exhibited myoclonic seizures and abnormal cortical EEG, including abnormal hippocampal-associated theta oscillations. In hippocampal slices, picrotoxin-insensitive inhibitory synaptic currents exhibited fast decay. Excitatory/inhibitory balance was elevated by an amount expected from the IPSC alteration. Partial pharmacological correction of γ2-mediated IPSCs with diazepam restored total EEG power toward baseline, but had little effect on the abnormal low-frequency peak in the EEG. The results suggest that at least part of the abnormality in brain function arises from the acute effects of truncated inhibition.


Subject(s)
Hippocampus/metabolism , Hippocampus/physiopathology , Neural Inhibition , Animals , Biomarkers , Cell Line , Diazepam/pharmacology , Disease Susceptibility , Electroencephalography , Excitatory Postsynaptic Potentials/drug effects , Humans , Immunohistochemistry , Inhibitory Postsynaptic Potentials/drug effects , Mice , Mice, Knockout , Receptors, GABA-A/genetics , Receptors, GABA-A/metabolism , gamma-Aminobutyric Acid/metabolism
10.
Physiol Rep ; 7(18): e14230, 2019 09.
Article in English | MEDLINE | ID: mdl-31549483

ABSTRACT

The synaptic α1ß2γ2 GABAA receptor is activated phasically by presynaptically released GABA. The receptor is considered to be inactive between synaptic events when exposed to ambient GABA because of its low resting affinity to the transmitter. We tested the hypothesis that a combination of physiological and/or clinical positive allosteric modulators of the GABAA receptor with ambient GABA generates measurable steady-state activity. Recombinant α1ß2γ2L GABAA receptors were expressed in Xenopus oocytes and activated by combinations of low concentrations of orthosteric (GABA, taurine) and allosteric (the steroid allopregnanolone, the anesthetic propofol) agonists, in the absence and presence of the inhibitory steroid pregnenolone sulfate. Steady-state activity was analyzed using the three-state cyclic Resting-Active-Desensitized model. We estimate that the steady-state open probability of the synaptic α1ß2γ2L GABAA receptor in the presence of ambient GABA (1 µmol/L), taurine (10 µmol/L), and physiological levels of allopregnanolone (0.01 µmol/L) and pregnenolone sulfate (0.1 µmol/L) is 0.008. Coapplication of a clinical concentration of propofol (1 µmol/L) increases the steady-state open probability to 0.03. Comparison of total charge transfer for phasic and tonic activity indicates that steady-state activity can contribute strongly (~20 to >99%) to integrated activity from the synaptic GABAA receptor.


Subject(s)
Receptors, GABA-A/metabolism , Synapses/metabolism , Anesthetics, Intravenous/administration & dosage , Anesthetics, Intravenous/pharmacology , Animals , Dose-Response Relationship, Drug , GABA-A Receptor Agonists/administration & dosage , GABA-A Receptor Agonists/pharmacology , Ligands , Oocytes/metabolism , Patch-Clamp Techniques , Pregnenolone/administration & dosage , Pregnenolone/pharmacology , Propofol/administration & dosage , Propofol/pharmacology , Receptors, GABA-A/drug effects , Xenopus laevis , gamma-Aminobutyric Acid/administration & dosage , gamma-Aminobutyric Acid/pharmacology
11.
Mol Pharmacol ; 96(3): 320-329, 2019 09.
Article in English | MEDLINE | ID: mdl-31263018

ABSTRACT

The two-state coagonist model has been successfully used to analyze and predict peak current responses of the γ-aminobutyric acid type A (GABAA) receptor. The goal of the present study was to provide a model-based description of GABAA receptor activity under steady-state conditions after desensitization has occurred. We describe the derivation and properties of the cyclic three-state resting-active-desensitized (RAD) model. The relationship of the model to receptor behavior was tested using concatemeric α1ß2γ2 GABAA receptors expressed in Xenopus oocytes. The receptors were activated by the orthosteric agonists GABA or ß-alanine, the allosteric agonist propofol, or combinations of GABA, propofol, pentobarbital, and the steroid allopregnanolone, and the observed steady-state responses were compared with those predicted by the model. A modified RAD model was employed to analyze and describe the actions on steady-state current of the inhibitory steroid pregnenolone sulfate. The findings indicate that the steady-state activity in the presence of multiple active agents that interact with distinct binding sites follows standard energetic additivity. The derived equations enable prediction of peak and steady-state activity in the presence of orthosteric and allosteric agonists, and the inhibitory steroid pregnenolone sulfate. SIGNIFICANCE STATEMENT: The study describes derivation and properties of a three-state resting-active-desensitized model. The model and associated equations can be used to analyze and predict peak and steady-state activity in the presence of one or more active agents.


Subject(s)
GABA-A Receptor Agonists/pharmacology , Receptors, GABA-A/chemistry , Receptors, GABA-A/metabolism , Xenopus laevis/genetics , Allosteric Regulation , Animals , Multiprotein Complexes/metabolism , Pentobarbital/pharmacology , Pregnanolone/pharmacology , Propofol/pharmacology , Receptors, GABA-A/genetics , Xenopus laevis/metabolism , beta-Alanine/pharmacology
12.
Mol Pharmacol ; 95(1): 70-81, 2019 01.
Article in English | MEDLINE | ID: mdl-30337372

ABSTRACT

Under both physiologic and clinical conditions GABAA receptors are exposed to multiple agonists, including the transmitter GABA, endogenous or exogenous neuroactive steroids, and various GABAergic anesthetic and sedative drugs. The functional output of the receptor reflects the interplay among all active agents. We have investigated the activation of the concatemeric α1ß2γ2L GABAA receptor by combinations of agonists. Simulations of receptor activity using the coagonist concerted transition model demonstrate that the response amplitude in the presence of agonist combinations is highly dependent on whether the paired agonists interact with the same or distinct sites. The experimental data for receptor activation by agonist combinations were in agreement with the established views of the overlap of binding sites for several pairs of orthosteric (GABA, ß-alanine, and piperidine-4-sulfonic acid) and/or allosteric agents (propofol, pentobarbital, and several neuroactive steroids). Conversely, the degree of potentiation when two GABAergic agents are coapplied can be used to determine whether the compounds act by binding to the same or distinct sites. We show that common interaction sites mediate the actions of 5α- and 5ß-reduced neuroactive steroids, and natural and enantiomeric steroids. Furthermore, the results indicate that the anesthetics propofol and pentobarbital interact with partially shared binding sites. We propose that the findings may be used to predict the efficacy of drug mixtures in combination therapy and thus have potential clinical relevance.


Subject(s)
Binding Sites/drug effects , GABA Agonists/pharmacology , Receptors, GABA-A/metabolism , Allosteric Regulation/drug effects , Anesthetics/pharmacology , Animals , Neurotransmitter Agents/metabolism , Oocytes/drug effects , Oocytes/metabolism , Pentobarbital/pharmacology , Propofol/pharmacology , Xenopus laevis , gamma-Aminobutyric Acid/metabolism
13.
Mol Pharmacol ; 95(1): 106-119, 2019 01.
Article in English | MEDLINE | ID: mdl-30333132

ABSTRACT

The Monod-Wyman-Changeux (MWC) cyclic model was described as a kinetic scheme to explain enzyme function and modulation more than 50 years ago and was proposed as a model for understanding the activation of transmitter-gated channels soon afterward. More recently, the MWC model has been used to describe the activation of the GABAA receptor by the transmitter, GABA, and drugs that bind to separate sites on the receptor. It is most interesting that the MWC formalism can also describe the interactions among drugs that activate the receptor. In this review, we describe properties of the MWC model that have been explored experimentally using the GABAA receptor, summarize analytical expressions for activation and interaction for drugs, and briefly review experimental results.


Subject(s)
Allosteric Regulation/physiology , Receptors, GABA-A/metabolism , Kinetics , Models, Biological
14.
Curr Neuropharmacol ; 17(9): 843-851, 2019.
Article in English | MEDLINE | ID: mdl-30520374

ABSTRACT

The co-agonist concerted transition model is a simple and practical solution to analyze various aspects of GABAA receptor function. Several model-based predictions have been verified experimentally in previous reports. We review here the practical implications of the model and demonstrate how it enables simplification of the experimental procedure and data analysis to characterize the effects of mutations or properties of novel ligands. Specifically, we show that the value of EC50 and the magnitude of current response are directly affected by basal activity, and that coapplication of a background agonist acting at a distinct site or use of a gain-of-function mutation can be employed to enable studies of weak activators or mutated receptors with impaired gating. We also show that the ability of one GABAergic agent to potentiate the activity elicited by another is a computable value that depends on the level of constitutive activity of the ion channel and the ability of each agonist to directly activate the receptor. Significantly, the model accurately accounts for situations where the paired agonists interact with the same site compared to distinct sites on the receptor.


Subject(s)
GABA-A Receptor Agonists/pharmacology , Receptors, GABA-A/drug effects , Receptors, GABA-A/physiology , Allosteric Regulation , Mutation , Propofol/pharmacology , Receptors, GABA-A/chemistry , Receptors, GABA-A/genetics
15.
J Neurosci ; 38(38): 8128-8145, 2018 09 19.
Article in English | MEDLINE | ID: mdl-30076210

ABSTRACT

Two major GABAA receptor classes mediate ionotropic GABA signaling, those containing a δ subunit and those with a γ2 subunit. The classical viewpoint equates γ2-containing receptors with IPSCs and δ-containing receptors with tonic inhibition because of differences in receptor localization, but significant questions remain because the populations cannot be pharmacologically separated. We removed this barrier using gene editing to confer a point mutation on the δ subunit in mice, rendering receptors containing the subunit picrotoxin resistant. By pharmacologically isolating δ-containing receptors, our results demonstrate their contribution to IPSCs in dentate granule neurons and weaker contributions to thalamocortical IPSCs. Despite documented extrasynaptic localization, we found that receptor localization does not preclude participation in isolated IPSCs, including mIPSCs. Further, phasic inhibition from δ subunit-containing receptors strongly inhibited summation of EPSPs, whereas tonic activity had little impact. In addition to any role that δ-containing receptors may play in canonical tonic inhibition, our results highlight a previously underestimated contribution of δ-containing receptors to phasic inhibition.SIGNIFICANCE STATEMENT GABAA receptors play key roles in transient and tonic inhibition. The prevailing view suggests that synaptic γ2-containing GABAA receptors drive phasic inhibition, whereas extrasynaptic δ-containing receptors mediate tonic inhibition. To re-evaluate the impact of δ receptors, we took a chemogenetic approach that offers a sensitive method to probe the synaptic contribution of δ-containing receptors. Our results reveal that localization does not strongly limit the contribution of δ receptors to IPSCs and that δ receptors make an unanticipated robust contribution to phasic inhibition.


Subject(s)
Dentate Gyrus/metabolism , Neurons/metabolism , Receptors, GABA-A/metabolism , Synapses/metabolism , Animals , Dentate Gyrus/cytology , Excitatory Postsynaptic Potentials/physiology , Gene Editing , Inhibitory Postsynaptic Potentials/physiology , Mice , Neural Inhibition/physiology , Neurons/cytology , Receptors, GABA-A/genetics , Synaptic Transmission/physiology
16.
Mol Pharmacol ; 93(2): 178-189, 2018 02.
Article in English | MEDLINE | ID: mdl-29192122

ABSTRACT

GABAA receptors can be directly activated and potentiated by the intravenous anesthetic propofol. Previous photolabeling, modeling, and functional data have identified two binding domains through which propofol acts on the GABAA receptor. These domains are defined by the ß(M286) residue at the ß"+"-α"-" interface in the transmembrane region and the ß(Y143) residue near the ß"-" surface in the junction between the extracellular and transmembrane domains. In the ternary receptor, there are predicted to be two copies of each class of sites, for a total of four sites per receptor. We used ß2α1γ2L and ß2α1 concatemeric constructs to determine the functional effects of the ß(Y143W) and ß(M286W) mutations to gain insight into the number of functional binding sites for propofol and the energetic contributions stemming from propofol binding to the individual sites. A mutation of each of the four sites affected the response to propofol, indicating that each of the four sites is functional in the wild-type receptor. The mutations mainly impaired stabilization of the open state by propofol, i.e., reduced gating efficacy. The effects were similar for mutations at either site and were largely additive and independent of the presence of other Y143W or M286W mutations in the receptor. The two classes of sites appeared to differ in affinity for propofol, with the site affected by M286W having about a 2-fold higher affinity. Our analysis indicates there may be one or two additional functionally equivalent binding sites for propofol, other than those modified by substitutions at ß(Y143) and ß(M286).


Subject(s)
Anesthetics, Intravenous/pharmacology , Propofol/pharmacology , Receptors, GABA-A/drug effects , Allosteric Regulation/drug effects , Anesthetics, Intravenous/administration & dosage , Anesthetics, Intravenous/metabolism , Animals , Binding Sites , Dose-Response Relationship, Drug , Ion Channel Gating/drug effects , Mutation , Propofol/administration & dosage , Propofol/metabolism , Receptors, GABA-A/chemistry , Receptors, GABA-A/genetics , Xenopus laevis
17.
Mol Pharmacol ; 93(2): 90-100, 2018 02.
Article in English | MEDLINE | ID: mdl-29150461

ABSTRACT

The concerted transition model for multimeric proteins is a simple formulation for analyzing the behavior of transmitter-gated ion channels. We used the model to examine the relationship between the EC50 for activation of the GABA type A (GABAA) receptor by the transmitter GABA and basal activity employing concatemeric ternary GABAA receptors expressed in Xenopus oocytes. Basal activity, reflecting the receptor function in the absence of the transmitter, can be changed either by mutation to increase constitutive activity or by the addition of a second agonist (acting at a different site) to increase background activity. The model predicts that either mechanism for producing a change in basal activity will result in identical effects on the EC50 We examined receptor activation by GABA while changing the level of basal activity with the allosterically acting anesthetics propofol, pentobarbital, or alfaxalone. We found that the relationship between EC50 and basal activity was well described by the concerted transition model. Changes in the basal activity by gain-of-function mutations also resulted in predictable changes in the EC50 Finally, we altered the number of GABA-binding sites by a mutation and again found that the relationship could be well described by the model. Overall, the results support the idea that interactions between the transmitter GABA and the allosteric agonists propofol, pentobarbital, or alfaxalone can be understood as reflecting additive and independent free energy changes, without assuming any specific interactions.


Subject(s)
GABA Agonists/pharmacology , Models, Theoretical , Receptors, GABA-A/metabolism , Allosteric Regulation , Anesthetics/pharmacology , Animals , Binding Sites , Dose-Response Relationship, Drug , Drug Interactions , GABA Agonists/administration & dosage , Models, Biological , Mutation , Oocytes/drug effects , Oocytes/metabolism , Patch-Clamp Techniques , Pentobarbital/administration & dosage , Pentobarbital/pharmacology , Pregnanediones/administration & dosage , Pregnanediones/pharmacology , Propofol/administration & dosage , Propofol/pharmacology , Xenopus laevis , gamma-Aminobutyric Acid/genetics , gamma-Aminobutyric Acid/metabolism
18.
Mol Pharmacol ; 92(5): 556-563, 2017 11.
Article in English | MEDLINE | ID: mdl-28790148

ABSTRACT

Drug interactions are often analyzed in terms of isobolograms. In the isobologram, the line connecting the axial points corresponding to the concentrations of two different drugs that produce an effect of the same magnitude is termed an isobole of additivity. Although the isobole of additivity can be a straight line in some special cases, previous work has proposed that it is curvilinear when the two drugs differ in their maximal effects or Hill slopes. Modulators of transmitter-gated ion channels have a wide range of maximal effects as well as Hill slopes, suggesting that the isoboles for drug actions on ion channel function are not linear. In this study, we have conducted an analysis of direct activation and potentiation of the human α1ß2γ2L GABAA receptor to demonstrate that: 1) curvilinear isoboles of additivity are predicted by a concerted transition model where the binding of each GABAergic drug additively and independently reduces the free energy of the open receptor compared with the closed receptor; and 2) experimental data for receptor activation using the agonist pair of GABA and propofol or potentiation of responses to a low concentration of GABA by the drug pair of alfaxalone and propofol agree very well with predictions. The approach assuming independent energetic contributions from GABAergic drugs enables, at least for the drug combinations tested, a straightforward method to accurately predict functional responses to any combination of concentrations.


Subject(s)
GABA Agonists/metabolism , Propofol/metabolism , Receptors, GABA-A/metabolism , gamma-Aminobutyric Acid/metabolism , Animals , Binding Sites/physiology , Dose-Response Relationship, Drug , Drug Combinations , Female , GABA Agonists/administration & dosage , Humans , Propofol/administration & dosage , Xenopus laevis , gamma-Aminobutyric Acid/administration & dosage
19.
Mol Pharmacol ; 92(3): 318-326, 2017 09.
Article in English | MEDLINE | ID: mdl-28630263

ABSTRACT

Physostigmine can potentiate and inhibit neuronal nicotinic receptors, in addition to inhibiting the activity of acetylcholinesterase. We found that receptors containing three copies of the α2 subunit are inhibited by low concentrations of physostigmine in contrast to receptors containing three copies of the α4 subunit that are potentiated. We exploited this observation to determine the regions required for the actions of physostigmine. Chimeric constructs of the α2 and α4 subunits located two regions in the extracellular amino-terminal domain of the subunit: the E loop (a loop of the transmitter-binding domain) and a region closer to the amino-terminus that collectively could completely determine the different effects of physostigmine. Point mutations then identified a single residue, α2(I92) versus α4(R92), that, when combined with transfer of the E loop, could convert the inhibition seen with α2 subunits to potentiation and the potentiation seen with α4 subunits to inhibition. In addition, other point mutations could affect the extent of potentiation or inhibition, indicating that a more extensive set of interactions in the amino-terminal domain plays some role in the actions of physostigmine.


Subject(s)
Nicotinic Antagonists/pharmacology , Physostigmine/pharmacology , Receptors, Nicotinic/chemistry , Animals , Humans , Mice , Protein Domains , Protein Subunits , Receptors, Nicotinic/drug effects , Structure-Activity Relationship , Xenopus laevis
20.
Mol Pharmacol ; 91(2): 100-109, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27895161

ABSTRACT

Physostigmine is a well known inhibitor of acetylcholinesterase, which can also activate, potentiate, and inhibit acetylcholine receptors, including neuronal nicotinic receptors comprising α4 and ß2 subunits. We have found that the two stoichiometric forms of this receptor differ in the effects of physostigmine. The form containing three copies of α4 and two of ß2 was potentiated at low concentrations of acetylcholine chloride (ACh) and physostigmine, whereas the form containing two copies of α4 and three of ß2 was inhibited. Chimeric constructs of subunits indicated that the presence of inhibition or potentiation depended on the source of the extracellular ligand binding domain of the subunit. Further sets of chimeric constructs demonstrated that a portion of the ACh binding domain, the E loop, is a key determinant. Transferring the E loop from the ß2 subunit to the α4 subunit resulted in strong inhibition, whereas the reciprocal transfer reduced inhibition. To control the number and position of the incorporated chimeric subunits, we expressed chimeric constructs with subunit dimers. Surprisingly, incorporation of a subunit with an altered E loop had similar effects whether it contributed either to an intersubunit interface containing a canonical ACh binding site or to an alternative interface. The observation that the α4 E loop is involved suggests that physostigmine interacts with regions of subunits that contribute to the ACh binding site, whereas the lack of interface specificity indicates that interaction with a particular ACh binding site is not the critical factor.


Subject(s)
Physostigmine/pharmacology , Receptors, Nicotinic/chemistry , Receptors, Nicotinic/metabolism , Amino Acid Sequence , Animals , Binding Sites , Humans , Protein Domains , Protein Structure, Secondary , Protein Subunits/chemistry , Protein Subunits/metabolism , Structure-Activity Relationship , Xenopus
SELECTION OF CITATIONS
SEARCH DETAIL
...