Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Acta Neuropathol ; 147(1): 5, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38159140

ABSTRACT

Plasma-to-autopsy studies are essential for validation of blood biomarkers and understanding their relation to Alzheimer's disease (AD) pathology. Few such studies have been done on phosphorylated tau (p-tau) and those that exist have made limited or no comparison of the different p-tau variants. This study is the first to use immunoprecipitation mass spectrometry (IP-MS) to compare the accuracy of eight different plasma tau species in predicting autopsy-confirmed AD. The sample included 123 participants (AD = 69, non-AD = 54) from the Boston University Alzheimer's disease Research Center who had an available ante-mortem plasma sample and donated their brain. Plasma samples proximate to death were analyzed by targeted IP-MS for six different tryptic phosphorylated (p-tau-181, 199, 202, 205, 217, 231), and two non-phosphorylated tau (195-205, 212-221) peptides. NIA-Reagan Institute criteria were used for the neuropathological diagnosis of AD. Binary logistic regressions tested the association between each plasma peptide and autopsy-confirmed AD status. Area under the receiver operating curve (AUC) statistics were generated using predicted probabilities from the logistic regression models. Odds Ratio (OR) was used to study associations between the different plasma tau species and CERAD and Braak classifications. All tau species were increased in AD compared to non-AD, but p-tau217, p-tau205 and p-tau231 showed the highest fold-changes. Plasma p-tau217 (AUC = 89.8), p-tau231 (AUC = 83.4), and p-tau205 (AUC = 81.3) all had excellent accuracy in discriminating AD from non-AD brain donors, even among those with CDR < 1). Furthermore, p-tau217, p-tau205 and p-tau231 showed the highest ORs with both CERAD (ORp-tau217 = 15.29, ORp-tau205 = 5.05 and ORp-tau231 = 3.86) and Braak staging (ORp-tau217 = 14.29, ORp-tau205 = 5.27 and ORp-tau231 = 4.02) but presented increased levels at different amyloid and tau stages determined by neuropathological examination. Our findings support plasma p-tau217 as the most promising p-tau species for detecting AD brain pathology. Plasma p-tau231 and p-tau205 may additionally function as markers for different stages of the disease.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/pathology , Amyloid beta-Peptides , tau Proteins , Autopsy , Biomarkers
2.
Alzheimers Dement (Amst) ; 15(4): e12492, 2023.
Article in English | MEDLINE | ID: mdl-37885919

ABSTRACT

Introduction: This study examined plasma glial fibrillary acidic protein (GFAP) as a biomarker of cognitive impairment due to Alzheimer's disease (AD) with and against plasma neurofilament light chain (NfL), and phosphorylated tau (p-tau)181+231. Methods: Plasma samples were analyzed using Simoa platform for 567 participants spanning the AD continuum. Cognitive diagnosis, neuropsychological testing, and dementia severity were examined for cross-sectional and longitudinal outcomes. Results: Plasma GFAP discriminated AD dementia from normal cognition (adjusted mean difference = 0.90 standard deviation [SD]) and mild cognitive impairment (adjusted mean difference = 0.72 SD), and demonstrated superior discrimination compared to alternative plasma biomarkers. Higher GFAP was associated with worse dementia severity and worse performance on 11 of 12 neuropsychological tests. Longitudinally, GFAP predicted decline in memory, but did not predict conversion to mild cognitive impairment or dementia. Discussion: Plasma GFAP was associated with clinical outcomes related to suspected AD and could be of assistance in a plasma biomarker panel to detect in vivo AD.

3.
Brain ; 145(10): 3546-3557, 2022 10 21.
Article in English | MEDLINE | ID: mdl-35554506

ABSTRACT

Blood-based biomarkers such as tau phosphorylated at threonine 181 (phosphorylated-tau181) represent an accessible, cost-effective and scalable approach for the in vivo detection of Alzheimer's disease pathophysiology. Plasma-pathological correlation studies are needed to validate plasma phosphorylated-tau181 as an accurate and reliable biomarker of Alzheimer's disease neuropathological changes. This plasma-to-autopsy correlation study included participants from the Boston University Alzheimer's Disease Research Center who had a plasma sample analysed for phosphorylated-tau181 between 2008 and 2018 and donated their brain for neuropathological examination. Plasma phosphorelated-tau181 was measured with single molecule array technology. Of 103 participants, 62 (60.2%) had autopsy-confirmed Alzheimer's disease. Average time between blood draw and death was 5.6 years (standard deviation = 3.1 years). Multivariable analyses showed higher plasma phosphorylated-tau181 concentrations were associated with increased odds for having autopsy-confirmed Alzheimer's disease [AUC = 0.82, OR = 1.07, 95% CI = 1.03-1.11, P < 0.01; phosphorylated-tau standardized (z-transformed): OR = 2.98, 95% CI = 1.50-5.93, P < 0.01]. Higher plasma phosphorylated-tau181 levels were associated with increased odds for having a higher Braak stage (OR = 1.06, 95% CI = 1.02-1.09, P < 0.01) and more severe phosphorylated-tau across six cortical and subcortical brain regions (ORs = 1.03-1.06, P < 0.05). The association between plasma phosphorylated-tau181 and Alzheimer's disease was strongest in those who were demented at time of blood draw (OR = 1.25, 95%CI = 1.02-1.53), but an effect existed among the non-demented (OR = 1.05, 95% CI = 1.01-1.10). There was higher discrimination accuracy for Alzheimer's disease when blood draw occurred in years closer to death; however, higher plasma phosphorylated-tau181 levels were associated with Alzheimer's disease even when blood draw occurred >5 years from death. Ante-mortem plasma phosphorylated-tau181 concentrations were associated with Alzheimer's disease neuropathology and accurately differentiated brain donors with and without autopsy-confirmed Alzheimer's disease. These findings support plasma phosphorylated-tau181 as a scalable biomarker for the detection of Alzheimer's disease.


Subject(s)
Alzheimer Disease , Nervous System Diseases , Humans , Alzheimer Disease/pathology , tau Proteins , Amyloid beta-Peptides , Autopsy , Biomarkers , Threonine
4.
Alzheimers Dement ; 18(8): 1523-1536, 2022 08.
Article in English | MEDLINE | ID: mdl-34854549

ABSTRACT

INTRODUCTION: We examined the ability of plasma hyperphosphorylated tau (p-tau)181 to detect cognitive impairment due to Alzheimer's disease (AD) independently and in combination with plasma total tau (t-tau) and neurofilament light (NfL). METHODS: Plasma samples were analyzed using the Simoa platform for 235 participants with normal cognition (NC), 181 with mild cognitive impairment due to AD (MCI), and 153 with AD dementia. Statistical approaches included multinomial regression and Gaussian graphical models (GGMs) to assess a network of plasma biomarkers, neuropsychological tests, and demographic variables. RESULTS: Plasma p-tau181 discriminated AD dementia from NC, but not MCI, and correlated with dementia severity and worse neuropsychological test performance. Plasma NfL similarly discriminated diagnostic groups. Unlike plasma NfL or t-tau, p-tau181 had a direct association with cognitive diagnosis in a bootstrapped GGM. DISCUSSION: These results support plasma p-tau181 for the detection of AD dementia and the use of blood-based biomarkers for optimal disease detection.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Alzheimer Disease/blood , Biomarkers , Cognitive Dysfunction/diagnosis , Humans , Intermediate Filaments , tau Proteins/blood
5.
J Alzheimers Dis ; 78(4): 1393-1408, 2020.
Article in English | MEDLINE | ID: mdl-33164933

ABSTRACT

BACKGROUND: The Framingham Stroke Risk Profile (FSRP) was created in 1991 to estimate 10-year risk of stroke. It was revised in 2017 (rFSRP) to reflect the modern data on vascular risk factors and stroke risk. OBJECTIVE: This study examined the association between the rFSRP and cognitive and brain aging outcomes among participants from the National Alzheimer's Coordinating Center (NACC) Uniform Data Set (UDS). METHODS: Cross-sectional rFSRP was computed at baseline for 19,309 participants (mean age = 72.84, SD = 8.48) from the NACC-UDS [9,697 (50.2%) normal cognition, 4,705 (24.4%) MCI, 4,907 (25.4%) dementia]. Multivariable linear, logistic, or ordinal regressions examined the association between the rFSRP and diagnostic status, neuropsychological test performance, CDR® Sum of Boxes, as well as total brain volume (TBV), hippocampal volume (HCV), and log-transformed white matter hyperintensities (WMH) for an MRI subset (n = 1,196). Models controlled for age, sex, education, racial identity, APOEɛ4 status, and estimated intracranial volume for MRI models. RESULTS: The mean rFSRP probability was 10.42% (min = 0.50%, max = 95.71%). Higher rFSRP scores corresponded to greater CDR Sum of Boxes (ß= 0.02, p = 0.028) and worse performance on: Trail Making Test A (ß= 0.05, p < 0.001) and B (ß= 0.057, p < 0.001), and Digit Symbol (ß= -0.058, p < 0.001). Higher rFSRP scores were associated with increased odds for a greater volume of log-transformed WMH (OR = 1.02 per quartile, p = 0.015). No associations were observed for diagnosis, episodic memory or language test scores, HCV, or TBV. CONCLUSION: These results support the rFSRP as a useful metric to facilitate clinical research on the associations between cerebrovascular disease and cognitive and brain aging.


Subject(s)
Blood Pressure , Brain/diagnostic imaging , Cognition , Cognitive Dysfunction/epidemiology , Stroke/epidemiology , Age Factors , Aged , Aged, 80 and over , Antihypertensive Agents/therapeutic use , Atrial Fibrillation/epidemiology , Brain/pathology , Cardiovascular Diseases/epidemiology , Diabetes Mellitus/epidemiology , Female , Hippocampus/diagnostic imaging , Hippocampus/pathology , Humans , Magnetic Resonance Imaging , Male , Neuropsychological Tests , Organ Size , Risk Factors , Sex Factors , Smoking/epidemiology
6.
Neurobiol Aging ; 94: 60-70, 2020 10.
Article in English | MEDLINE | ID: mdl-32585491

ABSTRACT

We examined baseline and longitudinal associations between plasma neurofilament light (NfL) and total tau (t-tau), and the clinical presentation of Alzheimer's disease (AD). A total of 579 participants (238, normal cognition [NC]; 185, mild cognitive impairment [MCI]; 156, AD dementia) had baseline blood draws; 82% had follow-up evaluations. Plasma samples were analyzed for NfL and t-tau using Simoa technology. Baseline plasma NfL was higher in AD dementia than MCI (standardized mean difference = 0.55, 95% CI: 0.37-0.73) and NC (standardized mean difference = 0.68, 95% CI: 0.49-0.88), corresponded to Clinical Dementia Rating scores (OR = 1.94, 95% CI: 1.35-2.79]), and correlated with all neuropsychological tests (r's = 0.13-0.42). Longitudinally, NfL did not predict diagnostic conversion but predicted decline on 3/10 neuropsychological tests. Baseline plasma t-tau was higher in AD dementia than NC with a small effect (standardized mean difference = 0.33, 95% CI: 0.10-0.57) but not MCI. t-tau did not statistically significant predict any longitudinal outcomes. Plasma NfL may be useful for the detection of AD dementia and monitoring of disease progression. In contrast, there was minimal evidence in support of plasma t-tau.


Subject(s)
Alzheimer Disease/diagnosis , Monitoring, Physiologic/methods , Neurofilament Proteins/blood , tau Proteins/blood , Aged , Aged, 80 and over , Biomarkers/blood , Cognitive Dysfunction/diagnosis , Disease Progression , Female , Follow-Up Studies , Humans , Longitudinal Studies , Male , Neuropsychological Tests , Predictive Value of Tests
7.
Alzheimers Res Ther ; 11(1): 64, 2019 07 27.
Article in English | MEDLINE | ID: mdl-31351489

ABSTRACT

BACKGROUND: Longitudinal investigations are needed to improve understanding of the contributions of cerebral small vessel disease to the clinical manifestation of Alzheimer's disease, particularly in the early disease stages. This study leveraged the National Alzheimer's Coordinating Center Uniform Data Set to longitudinally examine the association between white matter hyperintensities and neuropsychological, neuropsychiatric, and functional decline among participants with normal cognition. METHODS: The sample included 465 participants from the National Alzheimer's Coordinating Center Uniform Data Set who had quantitated volume of white matter hyperintensities from fluid-attenuated inversion recovery MRI, had normal cognition at the time of their MRI, and were administered the National Alzheimer's Coordinating Center Uniform Data Set neuropsychological test battery within 1 year of study evaluation and had at least two post-MRI time points of clinical data. Neuropsychiatric status was assessed by the Geriatric Depression Scale-15 and Neuropsychiatric Inventory-Questionnaire. Clinical Dementia Rating Sum of Boxes defined functional status. For participants subsequently diagnosed with mild cognitive impairment (MCI) or dementia, their impairment must have been attributed to Alzheimer's disease (AD) to evaluate the relationships between WMH and the clinical presentation of AD. RESULTS: Of the 465 participants, 56 converted to MCI or AD dementia (average follow-up = 5 years). Among the 465 participants, generalized estimating equations controlling for age, sex, race, education, APOE ε4, and total brain and hippocampal volume showed that higher baseline log-white matter hyperintensities predicted accelerated decline on the following neuropsychological tests in rank order of effect size: Trails B (p < 0.01), Digit Symbol Coding (p < 0.01), Logical Memory Immediate Recall (p = 0.02), Trail Making A (p < 0.01), and Semantic Fluency (p < 0.01). White matter hyperintensities predicted increases in Clinical Dementia Rating Sum of Boxes (p < 0.01) and Geriatric Depression Scale-15 scores (p = 0.01). Effect sizes were comparable to total brain and hippocampal volume. White matter hyperintensities did not predict diagnostic conversion. All effects also remained after including individuals with non-AD suspected etiologies for those who converted to MCI or dementia. CONCLUSIONS: In this baseline cognitively normal sample, greater white matter hyperintensities were associated with accelerated cognitive, neuropsychiatric, and functional decline independent of traditional risk factors and MRI biomarkers for Alzheimer's disease.


Subject(s)
Alzheimer Disease/pathology , Alzheimer Disease/psychology , Brain/pathology , Cognitive Dysfunction/pathology , Cognitive Dysfunction/psychology , White Matter/pathology , Aged , Aged, 80 and over , Biomarkers , Disease Progression , Female , Humans , Longitudinal Studies , Male , Middle Aged , Neuropsychological Tests , Risk Factors
8.
Alzheimers Dement ; 15(5): 686-698, 2019 05.
Article in English | MEDLINE | ID: mdl-30852157

ABSTRACT

INTRODUCTION: Recent research with neuropathologic or biomarker evidence of Alzheimer's disease (AD) casts doubt on traumatic brain injury (TBI) as a risk factor for AD. We leveraged the National Alzheimer's Coordinating Center to examine the association between self-reported TBI with loss of consciousness and AD neuropathologic changes, and with baseline and longitudinal clinical status. METHODS: The sample included 4761 autopsy participants (453 with remote TBI with loss of consciousness; 2822 with AD neuropathologic changes) from National Alzheimer's Coordinating Center. RESULTS: Self-reported TBI did not predict AD neuropathologic changes (P > .10). Reported TBI was not associated with baseline or change in dementia severity or cognitive function in participants with or without autopsy-confirmed AD. DISCUSSION: Self-reported TBI with loss of consciousness may not be an independent risk factor for clinical or pathological AD. Research that evaluates number and severity of TBIs is needed to clarify the neuropathological links between TBI and dementia documented in other large clinical databases.


Subject(s)
Alzheimer Disease/pathology , Autopsy , Brain Injuries, Traumatic/pathology , Neuropathology , Self Report , Aged , Alzheimer Disease/classification , Cognition , Databases, Factual , Female , Humans , Interviews as Topic , Male , Risk Factors
9.
J Alzheimers Dis ; 66(2): 601-611, 2018.
Article in English | MEDLINE | ID: mdl-30320588

ABSTRACT

BACKGROUND: Cerebrovascular disease (CVD) is highly comorbid with Alzheimer's disease (AD), yet its role is not entirely understood. Nailfold video capillaroscopy (NVC) is a noninvasive method of live imaging the capillaries near the fingernail's cuticle and may help to describe further vascular contributions to AD. OBJECTIVE: To examine finger nailfold capillary morphology using NVC in subjects with AD dementia, mild cognitive impairment (MCI), and normal cognition (NC). METHODS: We evaluated nailfold capillary hemorrhages, avascular zones ≥100 microns, and degree of tortuosity in 28 NC, 15 MCI, and 18 AD dementia subjects using NVC. Tortuosity was measured with a semi-quantitative rating scale. To assess the relation between nailfold capillary morphological features and diagnostic grouping, univariate and multivariable logistic regression models were fit to the data. RESULTS: 56% of subjects with AD dementia compared to 14% with NC and 13% with MCI displayed moderate to severe tortuosity. Greater severity of tortuosity was associated with 10.6-fold (95% confidence interval [CI]: 2.4, 46.2; p = 0.0018) and 7.4-fold (95% CI: 1.3, 41.3; p = 0.023) increased odds of AD dementia relative to NC and MCI, respectively, after adjusting for multiple covariates. CONCLUSION: Greater nailfold capillary tortuosity was found in participants with AD dementia compared to those with MCI or NC. These data provide preliminary evidence of a systemic microvasculopathy in AD that may be noninvasively and inexpensively evaluated through NVC.


Subject(s)
Alzheimer Disease/pathology , Capillaries/pathology , Cognition Disorders/pathology , Nails/blood supply , Nails/pathology , Aged , Aged, 80 and over , Capillaries/physiopathology , Female , Humans , Male , Neuropsychological Tests , Retrospective Studies , Video Recording
10.
J Alzheimers Dis ; 62(4): 1841-1855, 2018.
Article in English | MEDLINE | ID: mdl-29614641

ABSTRACT

BACKGROUND: Mild cognitive impairment (MCI) is an intermediate diagnosis between normal cognition (NC) and dementia, including Alzheimer's disease (AD) dementia. However, MCI is heterogeneous; many individuals subsequently revert to NC while others remain stable at MCI for several years. Identifying factors associated with this diagnostic instability could assist in defining clinical populations and determining cognitive prognoses. OBJECTIVE: The current study examined whether neuropsychiatric symptoms could partially account for the temporal instability in cognitive diagnoses. METHOD: The sample included 6,763 participants from the National Alzheimer's Coordinating Center Uniform Data Set. All participants had NC at baseline, completed at least two follow-up visits (mean duration: 5.5 years), and had no recent neurological conditions. Generalized linear models estimated by generalized estimating equations examined associations between changes in cognitive diagnoses and symptoms on the Neuropsychiatric Inventory Questionnaire (NPI-Q) and Geriatric Depression Scale (GDS-15). RESULTS: 1,121 participants converted from NC to MCI; 324 reverted back to NC and 242 progressed to AD dementia. Higher symptoms on the GDS-15 and circumscribed symptom domains on the NPI-Q were associated with conversion from NC to MCI and a decreased likelihood of reversion from MCI to NC. Individuals with higher symptoms on NPI-Q Hyperactivity and Mood items were more likely to progress to AD dementia. DISCUSSION: The temporal instability of MCI can be partially explained by neuropsychiatric symptoms. Individuals with higher levels of specific symptoms are more likely to progress to AD dementia and less likely to revert to NC. Identification and treatment of these symptoms might support cognitive functioning in older adults.


Subject(s)
Cognitive Dysfunction/psychology , Aged , Cognitive Dysfunction/drug therapy , Disease Progression , Female , Follow-Up Studies , Humans , Longitudinal Studies , Male , Neuropsychological Tests , Time Factors
11.
Arch Clin Neuropsychol ; 33(5): 530-540, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-29126099

ABSTRACT

OBJECTIVE: Neuropsychological test performance can provide insight into functional abilities in patients with dementia, particularly in the absence of an informant. The relationship between neuropsychological measures and instrumental activities of daily living (IADLs) is unclear due to hetereogeneity in cognitive domains assessed and neuropsychological tests administered. Practical and ecologically valid performance-based measures of IADLs are also limited. The Neuropsychological Assessment Battery (NAB) is uniquely positioned to provide a dual-purpose assessment of cognitive and IADL function, as it includes Daily Living tests that simulate real-world functional tasks. We examined the utility of select NAB tests in predicting informant-reported IADLs in mild cognitive impairment and dementia. METHODS: The sample of 327 participants included 128 normal controls, 97 individuals with mild cognitive impairment, and 102 individuals with Alzheimer's disease dementia from the Boston University Alzheimer's Disease Center research registry. Informants completed the Lawton Brody Instrumental Activities of Daily Living Scale, and study participants were administered selected NAB tests that were complementary to the existing protocol. RESULTS: ROC curves showed strongest prediction of IADL (AUC > 0.90) for memory measures (List Learning delayed recall and Daily Living Memory delayed recall) and Daily Living Driving Scenes. At a predetermined level of specificity (95%), List Learning delayed recall (71%) and Daily Living Memory delayed recall (88%) were the most sensitive. The Daily Living Memory and Driving Scenes tests strongly predicted IADL status, and the other Daily Living tests contributed unique variance. CONCLUSIONS: NAB memory measures and Daily Living Tests may have clinical utility in detecting informant-rated functional impairment in dementia.


Subject(s)
Dementia/psychology , Neuropsychological Tests , Activities of Daily Living , Aged , Aged, 80 and over , Alzheimer Disease/psychology , Cognitive Dysfunction/psychology , Executive Function , Female , Humans , Learning , Male , Mental Recall
12.
PLoS One ; 11(10): e0164492, 2016.
Article in English | MEDLINE | ID: mdl-27711147

ABSTRACT

Two of the most commonly used methods to assess memory functioning in studies of cognitive aging and dementia are story memory and list learning tests. We hypothesized that the most commonly used story memory test, Wechsler's Logical Memory, would generate more pronounced practice effects than a well validated but less common list learning test, the Neuropsychological Assessment Battery (NAB) List Learning test. Two hundred eighty-seven older adults, ages 51 to 100 at baseline, completed both tests as part of a larger neuropsychological test battery on an annual basis. Up to five years of recall scores from participants who were diagnosed as cognitively normal (n = 96) or with mild cognitive impairment (MCI; n = 72) or Alzheimer's disease (AD; n = 121) at their most recent visit were analyzed with linear mixed effects regression to examine the interaction between the type of test and the number of times exposed to the test. Other variables, including age at baseline, sex, education, race, time (years) since baseline, and clinical diagnosis were also entered as fixed effects predictor variables. The results indicated that both tests produced significant practice effects in controls and MCI participants; in contrast, participants with AD declined or remained stable. However, for the delayed-but not the immediate-recall condition, Logical Memory generated more pronounced practice effects than NAB List Learning (b = 0.16, p < .01 for controls). These differential practice effects were moderated by clinical diagnosis, such that controls and MCI participants-but not participants with AD-improved more on Logical Memory delayed recall than on delayed NAB List Learning delayed recall over five annual assessments. Because the Logical Memory test is ubiquitous in cognitive aging and neurodegenerative disease research, its tendency to produce marked practice effects-especially on the delayed recall condition-suggests a threat to its validity as a measure of new learning, an essential construct for dementia diagnosis.


Subject(s)
Alzheimer Disease/diagnosis , Cognitive Dysfunction/diagnosis , Aged , Aged, 80 and over , Alzheimer Disease/pathology , Cognitive Dysfunction/pathology , Disease Progression , Female , Humans , Male , Memory, Short-Term , Mental Recall , Middle Aged , Neuropsychological Tests
13.
Alzheimers Res Ther ; 8: 9, 2016 Feb 22.
Article in English | MEDLINE | ID: mdl-26899835

ABSTRACT

BACKGROUND: Specific cutoff scores on the Mini Mental State Examination (MMSE) and the Logical Memory (LM) test are used to determine inclusion in Alzheimer's disease (AD) clinical trials and diagnostic studies. These screening measures have known psychometric limitations, but no study has examined the diagnostic accuracy of the cutoff scores used to determine entry into AD clinical trials and diagnostic studies. METHODS: ClinicalTrials.gov entries were reviewed for phases II and III active and recruiting AD studies using the MMSE and LM for inclusion. The diagnostic accuracy of MMSE and LM-II cutoffs used in AD trials and diagnostic studies was examined using 23,438 subjects with normal cognition, mild cognitive impairment (MCI), and AD dementia derived from the National Alzheimer's Coordinating Center database. RESULTS: MMSE and LM cutoffs used in current AD clinical trials and diagnostic studies had limited diagnostic accuracy, particularly for distinguishing between normal cognition and MCI, and MCI from AD dementia. The MMSE poorly discriminated dementia stage. CONCLUSIONS: The MMSE and LM may result in inappropriate subject enrollment in large-scale, multicenter studies designed to develop therapeutics and diagnostic methods for AD.


Subject(s)
Alzheimer Disease/diagnosis , Alzheimer Disease/psychology , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/psychology , Mental Status Schedule , Neuropsychological Tests , Aged , Clinical Trials as Topic , Cognition , Female , Humans , Male , Memory , Psychometrics , ROC Curve
SELECTION OF CITATIONS
SEARCH DETAIL
...