Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Hum Mol Genet ; 33(11): 1001-1014, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38483348

ABSTRACT

The CEL gene encodes carboxyl ester lipase, a pancreatic digestive enzyme. CEL is extremely polymorphic due to a variable number tandem repeat (VNTR) located in the last exon. Single-base deletions within this VNTR cause the inherited disorder MODY8, whereas little is known about VNTR single-base insertions in pancreatic disease. We therefore mapped CEL insertion variants (CEL-INS) in 200 Norwegian patients with pancreatic neoplastic disorders. Twenty-eight samples (14.0%) carried CEL-INS alleles. Most common were insertions in repeat 9 (9.5%), which always associated with a VNTR length of 13 repeats. The combined INS allele frequency (0.078) was similar to that observed in a control material of 416 subjects (0.075). We performed functional testing in HEK293T cells of a set of CEL-INS variants, in which the insertion site varied from the first to the 12th VNTR repeat. Lipase activity showed little difference among the variants. However, CEL-INS variants with insertions occurring in the most proximal repeats led to protein aggregation and endoplasmic reticulum stress, which upregulated the unfolded protein response. Moreover, by using a CEL-INS-specific antibody, we observed patchy signals in pancreatic tissue from humans without any CEL-INS variant in the germline. Similar pancreatic staining was seen in knock-in mice expressing the most common human CEL VNTR with 16 repeats. CEL-INS proteins may therefore be constantly produced from somatic events in the normal pancreatic parenchyma. This observation along with the high population frequency of CEL-INS alleles strongly suggests that these variants are benign, with a possible exception for insertions in VNTR repeats 1-4.


Subject(s)
Minisatellite Repeats , Pancreas, Exocrine , Humans , Minisatellite Repeats/genetics , Animals , Mice , Pancreas, Exocrine/metabolism , Pancreas, Exocrine/enzymology , HEK293 Cells , Mutagenesis, Insertional/genetics , Alleles , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/enzymology , Gene Frequency , Male , Female , Lipase/genetics
2.
J Biol Chem ; 299(8): 104986, 2023 08.
Article in English | MEDLINE | ID: mdl-37392854

ABSTRACT

Congenital hyperinsulinism of infancy (CHI) can be caused by a deficiency of the ubiquitously expressed enzyme short-chain 3-hydroxyacyl-CoA dehydrogenase (SCHAD). To test the hypothesis that SCHAD-CHI arises from a specific defect in pancreatic ß-cells, we created genetically engineered ß-cell-specific (ß-SKO) or hepatocyte-specific (L-SKO) SCHAD knockout mice. While L-SKO mice were normoglycemic, plasma glucose in ß-SKO animals was significantly reduced in the random-fed state, after overnight fasting, and following refeeding. The hypoglycemic phenotype was exacerbated when the mice were fed a diet enriched in leucine, glutamine, and alanine. Intraperitoneal injection of these three amino acids led to a rapid elevation in insulin levels in ß-SKO mice compared to controls. Consistently, treating isolated ß-SKO islets with the amino acid mixture potently enhanced insulin secretion compared to controls in a low-glucose environment. RNA sequencing of ß-SKO islets revealed reduced transcription of ß-cell identity genes and upregulation of genes involved in oxidative phosphorylation, protein metabolism, and Ca2+ handling. The ß-SKO mouse offers a useful model to interrogate the intra-islet heterogeneity of amino acid sensing given the very variable expression levels of SCHAD within different hormonal cells, with high levels in ß- and δ-cells and virtually absent α-cell expression. We conclude that the lack of SCHAD protein in ß-cells results in a hypoglycemic phenotype characterized by increased sensitivity to amino acid-stimulated insulin secretion and loss of ß-cell identity.


Subject(s)
3-Hydroxyacyl-CoA Dehydrogenase , Amino Acids , Congenital Hyperinsulinism , Hypoglycemia , Insulin Secretion , Insulin-Secreting Cells , Animals , Mice , Amino Acids/metabolism , Amino Acids/pharmacology , Hypoglycemia/enzymology , Hypoglycemia/genetics , Insulin/metabolism , Insulin Secretion/drug effects , Mice, Knockout , 3-Hydroxyacyl-CoA Dehydrogenase/deficiency , 3-Hydroxyacyl-CoA Dehydrogenase/genetics , Insulin-Secreting Cells/enzymology , Congenital Hyperinsulinism/genetics
3.
Pancreatology ; 22(8): 1099-1111, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36379850

ABSTRACT

BACKGROUND & AIMS: The CEL gene encodes the digestive enzyme carboxyl ester lipase. CEL-HYB1, a hybrid allele of CEL and its adjacent pseudogene CELP, is a genetic variant suggested to increase the risk of chronic pancreatitis (CP). Our aim was to develop a mouse model for CEL-HYB1 that enables studies of pancreatic disease mechanisms. METHODS: We established a knock-in mouse strain where the variable number of tandem repeat (VNTR) region of the endogenous mouse Cel gene was substituted with the mutated VNTR of the human CEL-HYB1 allele. Heterozygous and homozygous Cel-HYB1 mice and littermate wildtype controls were characterized with respect to pancreatic pathology and function. RESULTS: We successfully constructed a mouse model with pancreatic expression of a humanized CEL-HYB1 protein. The Cel-HYB1 mice spontaneously developed features of CP including inflammation, acinar atrophy and fatty replacement, and the phenotype became more pronounced as the animals aged. Moreover, Cel-HYB1 mice were normoglycemic at age 6 months, whereas at 12 months they exhibited impaired glucose tolerance. Immunostaining of pancreatic tissue indicated the formation of CEL protein aggregates, and electron microscopy showed dilated endoplasmic reticulum. Upregulation of the stress marker BiP/GRP78 was seen in pancreatic parenchyma obtained both from Cel-HYB1 animals and from a human CEL-HYB1 carrier. CONCLUSIONS: We have developed a new mouse model for CP that confirms the pathogenicity of the human CEL-HYB1 variant. Our findings place CEL-HYB1 in the group of genes that increase CP risk through protein misfolding-dependent pathways.


Subject(s)
Lipase , Pancreatitis, Chronic , Humans , Mice , Animals , Aged , Infant , Lipase/genetics , Pancreatitis, Chronic/genetics , Alleles , Minisatellite Repeats , Risk Factors
4.
Pancreatology ; 20(3): 377-384, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32007358

ABSTRACT

BACKGROUND/OBJECTIVES: Carboxyl ester lipase is a pancreatic enzyme encoded by CEL, an extremely polymorphic human gene. Pathogenic variants of CEL either increases the risk for chronic pancreatitis (CP) or cause MODY8, a syndrome of pancreatic exocrine and endocrine dysfunction. Here, we aimed to characterize a novel duplication allele of CEL (CEL-DUP2) and to investigate whether it associates with CP or pancreatic cancer. METHODS: The structure of CEL-DUP2 was determined by a combination of Sanger sequencing, DNA fragment analysis, multiplex ligation-dependent probe amplification and whole-genome sequencing. We developed assays for screening of CEL-DUP2 and analyzed cohorts of idiopathic CP, alcoholic CP and pancreatic cancer. CEL protein expression was analyzed by immunohistochemistry. RESULTS: CEL-DUP2 consists of an extra copy of the complete CEL gene. The allele has probably arisen from non-allelic, homologous recombination involving the adjacent pseudogene of CEL. We found no association between CEL-DUP2 carrier frequency and CP in cohorts from France (cases/controls: 2.5%/2.4%; P = 1.0), China (10.3%/8.1%; P = 0.08) or Germany (1.6%/2.3%; P = 0.62). Similarly, no association with disease was observed in alcohol-induced pancreatitis (Germany: 3.2%/2.3%; P = 0.51) or pancreatic cancer (Norway; 2.5%/3.2%; P = 0.77). Notably, the carrier frequency of CEL-DUP2 was more than three-fold higher in Chinese compared with Europeans. CEL protein expression was similar in tissues from CEL-DUP2 carriers and controls. CONCLUSIONS: Our results support the contention that the number of CEL alleles does not influence the risk of pancreatic exocrine disease. Rather, the pathogenic CEL variants identified so far involve exon 11 sequence changes that substantially alter the protein's tail region.


Subject(s)
Lipase/genetics , Pancreatitis, Chronic/epidemiology , Pancreatitis, Chronic/genetics , Adult , Aged , Alleles , DNA/genetics , Female , Gene Duplication , Gene Frequency , Genetic Testing , Heterozygote , Humans , Male , Middle Aged , Pancreas/pathology , Pancreatic Neoplasms/epidemiology , Pancreatic Neoplasms/genetics , Pancreatitis, Alcoholic/epidemiology , Pancreatitis, Alcoholic/genetics , Pancreatitis, Chronic/pathology , Risk
5.
BMC Cancer ; 19(1): 11, 2019 Jan 05.
Article in English | MEDLINE | ID: mdl-30611220

ABSTRACT

BACKGROUND: Reliable methods are needed to identify patients with early-stage cancer or high-grade precancerous lesions in the pancreas. Analysis of pancreatic juice to detect somatic mutations could represent one such approach. Here we investigated the concordance between mutations found in the primary tumor and pancreatic juice from the same patient. METHODS: Amplicon-based targeted deep sequencing was performed on samples from 21 patients with pancreatic ductal adenocarcinoma (PDAC) who had undergone Whipple's operation. Mutation profiles were determined in formalin-fixed sections of the primary tumor and in pancreatic juice sampled from the main pancreatic duct during surgery. RESULTS: Using a cut-off of 3% for variant allele frequency, KRAS mutations were detected in 20/21 primary tumors (95%) and in 15/21 (71%) juice samples. When also considering low-frequency variants, KRAS mutations were found in 20/21 juice samples. Most juice samples exhibited multiple KRAS variants not seen in the primary tumor, and only in 11 cases (52%) did the most abundant variant of the juice correspond to the KRAS mutation detected in the tumor. TP53 mutations were found in 16 tumors (76%) and six juice samples (29%). Among the positive juice samples, only one exhibited more than a single TP53 mutation. Detection of both KRAS and TP53 mutations was fully concordant in the primary tumor and juice sample in 7/21 cases (33%). CONCLUSIONS: Pancreatic juice from PDAC patients is rich in KRAS mutations often not seen in the primary tumor and possibly reflecting precancerous lesions in other regions of the pancreas. The inclusion of TP53 mutation detection and additional markers must therefore be considered for fully exploiting the clinical potential of pancreatic juice samples in early cancer detection.


Subject(s)
Adenocarcinoma/genetics , Carcinoma, Pancreatic Ductal/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Tumor Suppressor Protein p53/genetics , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Aged , Aged, 80 and over , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , DNA Mutational Analysis , Female , Gene Frequency , High-Throughput Nucleotide Sequencing , Humans , Liquid Biopsy , Male , Middle Aged , Mutation/genetics , Pancreas/metabolism , Pancreas/pathology , Pancreatic Juice/metabolism
6.
Cancer Med ; 6(7): 1531-1540, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28556564

ABSTRACT

Both serology-based and genetic studies have reported an association between pancreatic cancer risk and ABO blood groups. We have investigated this relationship in a cohort of pancreatic cancer patients from Western Norway (n = 237) and two control materials (healthy blood donors, n = 379; unselected hospitalized patients, n = 6149). When comparing patient and blood donor ABO allele frequencies, we found only the A1 allele to be associated with significantly higher risk for pancreatic ductal adenocarcinoma (PDAC) (23.8% vs. 17.9%; OR = 1.43, P = 0.018). Analyzing phenotypes, blood group A was more frequent among PDAC cases than blood donors (50.8% vs. 40.6%; OR = 1.51, P = 0.021), an enrichment fully explained by the A1 subgroup. Blood group O frequency was lower in cases than in blood donors (33.8% vs. 42.7%; OR = 0.69, P = 0.039). This lower frequency was confirmed when cases were compared to hospitalized patients (33.8% vs. 42.9%; OR = 0.68, P = 0.012). Results for blood group B varied according to which control cohort was used for comparison. When patients were classified according to surgical treatment, the enrichment of blood group A was most prominent among unresected cases (54.0%), who also had the lowest prevalence of O (28.7%). There was a statistically significant better survival (P = 0.04) for blood group O cases than non-O cases among unresected but not among resected patients. Secretor status did not show an association with PDAC or survival. Our study demonstrates that pancreatic cancer risk is influenced by ABO status, in particular blood groups O and A1 , and that this association may reflect also in tumor resectability and survival.


Subject(s)
ABO Blood-Group System , Carcinoma, Pancreatic Ductal/blood , Carcinoma, Pancreatic Ductal/epidemiology , Disease Susceptibility , Pancreatic Neoplasms/blood , Pancreatic Neoplasms/epidemiology , ABO Blood-Group System/genetics , ABO Blood-Group System/immunology , Aged , Aged, 80 and over , Alleles , Biomarkers , Carcinoma, Pancreatic Ductal/mortality , Carcinoma, Pancreatic Ductal/surgery , Case-Control Studies , Female , Fucosyltransferases/genetics , Gene Frequency , Genome-Wide Association Study , Genotype , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Norway/epidemiology , Odds Ratio , Pancreatic Neoplasms/mortality , Pancreatic Neoplasms/surgery , Phenotype , Polymorphism, Single Nucleotide , Risk Assessment , Risk Factors , Galactoside 2-alpha-L-fucosyltransferase
7.
Pancreatology ; 17(1): 83-88, 2017.
Article in English | MEDLINE | ID: mdl-27773618

ABSTRACT

BACKGROUND/OBJECTIVES: We have recently described copy number variants (CNVs) of the human carboxyl-ester lipase (CEL) gene, including a recombined deletion allele (CEL-HYB) that is a genetic risk factor for chronic pancreatitis. Associations with pancreatic disease have also been reported for the variable number of tandem repeat (VNTR) region located in CEL exon 11. Here, we examined if CEL CNVs and VNTR length polymorphisms affect the risk for developing pancreatic cancer. METHODS: CEL CNVs and VNTR were genotyped in a German family with non-alcoholic chronic pancreatitis and pancreatic cancer, in 265 German and 197 Norwegian patients diagnosed with pancreatic adenocarcinoma, and in 882 controls. CNV screening was performed using PCR assays followed by agarose gel electrophoresis whereas VNTR lengths were determined by DNA fragment analysis. RESULTS: The investigated family was CEL-HYB-positive. However, an association of CEL-HYB or a duplication CEL allele with pancreatic cancer was not seen in our two patient cohorts. The frequency of the 23-repeat VNTR allele was borderline significant in Norwegian cases compared to controls (1.2% vs. 0.3%; P = 0.05). For all other VNTR lengths, no statistically significant difference in frequency was observed. Moreover, no association with pancreatic cancer was detected when CEL VNTR lengths were pooled into groups of short, normal or long alleles. CONCLUSIONS: We could not demonstrate an association between CEL CNVs and pancreatic cancer. An association is also unlikely for CEL VNTR lengths, although analyses in larger materials are necessary to completely exclude an effect of rare VNTR alleles.


Subject(s)
Adenocarcinoma/genetics , Biomarkers, Tumor/genetics , DNA Copy Number Variations , Lipase/genetics , Minisatellite Repeats , Pancreatic Neoplasms/genetics , Case-Control Studies , Female , Humans , Male , Risk Factors
8.
Nat Genet ; 47(5): 518-522, 2015 May.
Article in English | MEDLINE | ID: mdl-25774637

ABSTRACT

Carboxyl ester lipase is a digestive pancreatic enzyme encoded by the CEL gene. Mutations in CEL cause maturity-onset diabetes of the young as well as pancreatic exocrine dysfunction. Here we describe a hybrid allele (CEL-HYB) originating from a crossover between CEL and its neighboring pseudogene, CELP. In a discovery series of familial chronic pancreatitis cases, we observed CEL-HYB in 14.1% (10/71) of cases compared to 1.0% (5/478) of controls (odds ratio (OR) = 15.5; 95% confidence interval (CI) = 5.1-46.9; P = 1.3 × 10(-6) by two-tailed Fisher's exact test). In three replication studies of nonalcoholic chronic pancreatitis, we identified CEL-HYB in a total of 3.7% (42/1,122) cases and 0.7% (30/4,152) controls (OR = 5.2; 95% CI = 3.2-8.5; P = 1.2 × 10(-11); formal meta-analysis). The allele was also enriched in alcoholic chronic pancreatitis. Expression of CEL-HYB in cellular models showed reduced lipolytic activity, impaired secretion, prominent intracellular accumulation and induced autophagy. These findings implicate a new pathway distinct from the protease-antiprotease system of pancreatic acinar cells in chronic pancreatitis.


Subject(s)
Carboxylesterase/genetics , Lipase/genetics , Pancreatitis, Chronic/genetics , Alcoholism/complications , Alcoholism/enzymology , Alcoholism/genetics , Amino Acid Sequence , Carboxylesterase/metabolism , Case-Control Studies , DNA Copy Number Variations , Female , Gene Frequency , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Linkage Disequilibrium , Male , Pancreatitis, Chronic/enzymology , Polymorphism, Single Nucleotide , Recombination, Genetic
9.
J Med Genet ; 50(4): 264-70, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23384855

ABSTRACT

BACKGROUND: CDKN2A and CDK4 are high risk susceptibility genes for cutaneous malignant melanoma. Melanoma families with CDKN2A germline mutations have been extensively characterised, whereas CDK4 families are rare and lack a systematic investigation of their phenotype. METHODS: All known families with CDK4 germline mutations (n=17) were recruited for the study by contacting the authors of published papers or by requests via the Melanoma Genetics Consortium (GenoMEL). Phenotypic data related to primary melanoma and pigmentation characteristics were collected. The CDK4 exon 2 and the complete coding region of the MC1R gene were sequenced. RESULTS: Eleven families carried the CDK4 R24H mutation whereas six families had the R24C mutation. The total number of subjects with verified melanoma was 103, with a median age at first melanoma diagnosis of 39 years. Forty-three (41.7%) subjects had developed multiple primary melanomas (MPM). A CDK4 mutation was found in 89 (including 62 melanoma cases) of 209 tested subjects. CDK4 positive family members (both melanoma cases and unaffected subjects) were more likely to have clinically atypical nevi than CDK4 negative family members (p<0.001). MPM subjects had a higher frequency of MC1R red hair colour variants compared with subjects with one tumour (p=0.010). CONCLUSION: Our study shows that families with CDK4 germline mutations cannot be distinguished phenotypically from CDKN2A melanoma families, which are characterised by early onset of disease, increased occurrence of clinically atypical nevi, and development of MPM. In a clinical setting, the CDK4 gene should therefore always be examined when a melanoma family tests negative for CDKN2A mutation.


Subject(s)
Cyclin-Dependent Kinase 4/genetics , Cyclin-Dependent Kinase Inhibitor p16/genetics , Hair Color/genetics , Melanoma/genetics , Skin Neoplasms/genetics , Adult , Exons , Female , Germ-Line Mutation , Humans , Male , Melanoma/pathology , Middle Aged , Phenotype , Skin Neoplasms/pathology
10.
Tidsskr Nor Laegeforen ; 129(22): 2358-61, 2009 Nov 19.
Article in Norwegian | MEDLINE | ID: mdl-19935936

ABSTRACT

BACKGROUND: Mutations in genes of the mitogen-activated protein kinase (MAPK) cascade have recently been shown to cause several syndromes characterized by dysmorphic facial features, growth retardation, cognitive impairment, heart disease and cutaneous abnormalities. This signalling pathway involves RAS and RAF proteins, and is central in the regulation of normal growth and the development of cancer. MATERIAL AND METHODS: We have studied 23 Norwegian patients for whom there was a clinical suspicion of Costello, Noonan or cardio-facio-cutaneous syndrome. Patients suspected of having Noonan syndrome had previously tested negative for mutations in the tyrosine phosphatase gene PTPN11. The material was examined for mutations in the HRAS, KRAS, RAF1 and BRAF genes. Two patients are described to illustrate diagnostic challenges and the usefulness of genetic testing. RESULTS: Ten of 23 patients (43 %) had mutations affecting the RAS/MAPK signalling pathway. Mutations in HRAS were most common (five cases), while three patients had mutations in KRAS and two in RAF1. Spontaneous mutations were demonstrated in eight cases. Our data indicate an annual incidence of 1-2 new cases of congenital RAS/RAF mutations in Norway. INTERPRETATION: Upon clinical suspicion of syndromes of the RAS/MAPK signalling pathway, molecular genetic analyses may be essential for a correct diagnosis. Certain mutations are associated with an increased cancer risk, exemplifying that results of genetic laboratory testing may influence medical management.


Subject(s)
Abnormalities, Multiple/genetics , Craniofacial Abnormalities/genetics , MAP Kinase Signaling System/genetics , Mitogen-Activated Protein Kinase Kinases/genetics , ras Proteins/genetics , Adolescent , Adult , Child, Preschool , Costello Syndrome/genetics , Genes, ras/genetics , Genetic Techniques , Humans , Infant , LEOPARD Syndrome/genetics , Male , Noonan Syndrome/genetics , Proto-Oncogene Proteins A-raf/genetics , Proto-Oncogene Proteins B-raf/genetics , Syndrome
11.
BMC Clin Pathol ; 9: 6, 2009 Aug 19.
Article in English | MEDLINE | ID: mdl-19691827

ABSTRACT

BACKGROUND: The members of the retinoblastoma protein family, pRb, p107 and pRb2 (p130), are central players in controlling the cell cycle. Whereas disturbed function of pRb is commonly seen in human cancers, it is still an open question whether pRb2 is involved in tumorigenic processes. However, altered subcellular localization of pRb2 and mutations in the pRb2-encoding gene RBL2 have been described for some tumours, including Burkitt lymphomas (BL). METHODS: We retrieved 51 biopsy specimens of endemic BL cases from Uganda. The expression of pRb2 was determined by immunohistochemistry. Exons 1922 of the RBL2 gene, the region known to contain a nuclear localization signal, were screened for mutations by PCR amplification and direct DNA sequencing. RESULTS: Nearly all of our cases (84.0%) were positive for pRb2 protein expression although this protein is a marker for growth arrest and Burkitt lymphoma is characterized by a high proliferation rate. Of the positive cases, 73.8% were scored as expressing the protein at a high level. Subcellular pRb2 localization was predominantly nuclear and no cases with expression restricted to the cytoplasm were observed. We did not detect any RBL2 mutations in the part of the gene that encodes the C-terminal end of the protein. CONCLUSION: The majority of endemic BL cases from Uganda express pRb2, but somatic RBL2 mutations affecting the protein's nuclear localization signal appear to be rare.

12.
BMJ Case Rep ; 20092009.
Article in English | MEDLINE | ID: mdl-21686750

ABSTRACT

Mutations in genes involved in Ras signalling cause Noonan syndrome and other disorders characterised by growth disturbances and variable neuro-cardio-facio-cutaneous features. We describe two sisters, who presented with dysmorphic features, hypotonia, retarded growth and psychomotor retardation. The patients were initially diagnosed with Costello syndrome, an autosomal recessive inheritance was assumed. Remarkably, however, we identified a germline HRAS mutation (G12A) in one sister and a germline KRAS mutation (F156L) in her sibling. Both mutations had arisen de novo. The F156L mutant K-Ras protein accumulated in the active, guanosine triphosphate-bound conformation and affected downstream signalling. The patient harbouring this mutation was followed for three decades, and her cardiac hypertrophy gradually normalised. However, she developed severe epilepsy with hippocampal sclerosis and atrophy. The occurrence of distinct de novo mutations adds to variable expressivity and gonadal mosaicism as possible explanations of how an autosomal dominant disease may manifest as an apparently recessive condition.

13.
Genes Chromosomes Cancer ; 47(2): 175-84, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18023021

ABSTRACT

The presence of multiple primary cutaneous melanomas (MPM) has been advocated as guidance to identifying melanoma families. Frequencies of CDKN2A mutations in materials of sporadic MPM cases from pigmented lesion clinics vary between 8 and 15%. Patients with MPM have therefore been regarded as good candidates for CDKN2A mutational screening. We describe a population-based study where all persons in Norway diagnosed with MPM between 1953 and 2004 (n = 738 alive per April 2004) were invited to participate. Three-hundred-and-ninety patients (52.8%) responded confidentially. Mutations in CDKN2A were found in 6.9% of the respondents. Eighty-one MPM patients (20.8%) reported that they belonged to melanoma families, and 17 (21.0%) of these harboured a CDKN2A mutation, compared to 3.2% of the nonfamilial cases. The probability of finding a CDKN2A mutation increased when the patients had three or more melanomas, or a young age of onset of first melanoma. We identified five novel CDKN2A variants (Ala57Gly, Pro81Arg, Ala118Val, Leu130Val, and Arg131Pro) and four that previously have been reported in melanoma families (Glu27X, Met53Ile, Arg87Trp, and Ala127Pro). A large deletion (g.13623_23772del10150) encompassing exon 1alpha and the 5' part of exon 2 was detected in six patients with a family history of melanoma. Three patients, belonging to the same family, had the CDK4 Arg24His mutation. The frequency of CDKN2A mutations was lower than previously reported in other studies, an observation which probably is due to the population-based design of our study.


Subject(s)
Cyclin-Dependent Kinase 4/genetics , Cyclin-Dependent Kinase Inhibitor p16/genetics , Genes, p16 , Melanoma/genetics , Mutation , Skin Neoplasms/genetics , Adult , Amino Acid Substitution/genetics , Base Sequence , Cross-Sectional Studies , Female , Genetic Variation , Humans , Male , Melanoma/epidemiology , Middle Aged , Molecular Sequence Data , Prevalence , Skin Neoplasms/epidemiology
14.
J Med Genet ; 44(7): e84, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17601930

ABSTRACT

Mutations in genes involved in Ras signalling cause Noonan syndrome and other disorders characterised by growth disturbances and variable neuro-cardio-facio-cutaneous features. We describe two sisters, 46 and 31 years old, who presented with dysmorphic features, hypotonia, feeding difficulties, retarded growth and psychomotor retardation early in life. The patients were initially diagnosed with Costello syndrome, and autosomal recessive inheritance was assumed. Remarkably, however, we identified a germline HRAS mutation (G12A) in one sister and a germline KRAS mutation (F156L) in her sibling. Both mutations had arisen de novo. The F156L mutant K-Ras protein accumulated in the active, guanosine triphosphate-bound conformation and affected downstream signalling. The patient harbouring this mutation was followed for three decades, and her cardiac hypertrophy gradually normalised. However, she developed severe epilepsy with hippocampal sclerosis and atrophy. The occurrence of distinct de novo mutations adds to variable expressivity and gonadal mosaicism as possible explanations of how an autosomal dominant disease may manifest as an apparently recessive condition.


Subject(s)
Abnormalities, Multiple/genetics , Germ-Line Mutation/genetics , Growth Disorders/genetics , Phenotype , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins/genetics , ras Proteins/genetics , Abnormalities, Multiple/pathology , Adult , Animals , COS Cells , Chlorocebus aethiops , DNA Mutational Analysis , DNA Primers/genetics , Face/abnormalities , Female , Genes, Dominant/genetics , Growth Disorders/pathology , Heart Defects, Congenital/genetics , Hippocampus/abnormalities , Hippocampus/pathology , Humans , Immunoblotting , Magnetic Resonance Imaging , Middle Aged , Pedigree , Proto-Oncogene Proteins/metabolism , Signal Transduction/genetics , Skin Abnormalities/genetics , ras Proteins/metabolism
15.
Virchows Arch ; 448(6): 788-96, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16598499

ABSTRACT

The vast majority of tumors of the pancreas are ductal adenocarcinomas. This cancer type has an extremely poor prognosis and in many Western countries, it represents the fifth leading cause of cancer-related death. Pancreatic ductal adenocarcinomas exhibit the highest incidence of activating KRAS (Ki-Ras) mutations observed in any human cancer. It was therefore of interest to examine how this pattern would relate to mutations in the BRAF and EGFR genes, which are involved in the same signaling pathway as KRAS. We screened a series of 43 formalin-fixed, paraffin-embedded ductal adenocarcinomas of the pancreas. When DNA was extracted from whole tissue sections, KRAS codon 12 mutations were detected in 67% of the tumors. When cancerous ducts were isolated by laser-assisted microdissection, 91% were positive for KRAS mutations. Although it did not reach statistical significance, there was a trend in our material that survival after diagnosis varied according to KRAS mutation subtype, GTT-positive patients having the best prognosis. No alterations in BRAF exons 11 and 15 or in EGFR exons 18-21 were detected in KRAS-positive or KRAS-negative cases. We therefore conclude that the BRAF and EGFR mutations commonly seen in a variety of human cancers are generally absent from pancreatic ductal adenocarcinomas. Apparently, these tumors depend on no more than one genetic hit in the EGFR-RAS-RAF signaling pathway.


Subject(s)
Carcinoma, Pancreatic Ductal/genetics , Genes, erbB-1 , Genes, ras , Mutation , Pancreatic Neoplasms/genetics , Proto-Oncogene Proteins B-raf/genetics , Adult , Aged , Aged, 80 and over , Carcinoma, Pancreatic Ductal/mortality , Carcinoma, Pancreatic Ductal/pathology , DNA Mutational Analysis , DNA Primers/chemistry , DNA, Neoplasm/genetics , Female , Humans , Male , Middle Aged , Neoplasm Proteins/genetics , Pancreatic Neoplasms/mortality , Pancreatic Neoplasms/pathology , Proto-Oncogene Proteins B-raf/metabolism , Survival Rate
16.
Int J Cancer ; 118(8): 1877-83, 2006 Apr 15.
Article in English | MEDLINE | ID: mdl-16287065

ABSTRACT

Uterine cervical carcinogenesis is probably dependent on cellular genetic damage in addition to the integration of high-risk HPV DNA in the epithelial cell genome. Gain of chromosome 3q24-29 is commonly observed in cervical neoplasia. The putative oncogene PIK3CA located in this region encodes a phosphatidylinositol 3-kinase (PI3K). In a process reversed by PTEN, PI3K generates inositol phospholipids that trigger AKT phosphorylation, which in turn effects tumor driving signals. We studied 46 specimens of formalin-fixed, paraffin-embedded cervical neoplastic tissue. The activation state of the PI3K-AKT pathway was assessed immunohistochemically using an antibody with specificity towards serine 473-phosphorylated AKT. AKT phosphorylation was found in 39 out of 46 examined specimens. To examine the possible molecular basis for this activation, we searched for PIK3CA amplification using quantitative real-time polymerase chain reaction. PIK3CA gene copy number was estimated to be 3 or more in 28 out of 40 successfully examined cases. Further, a PTEN mutation analysis of all 9 PTEN exons was carried out, but except for 1 metastasis with an exon 9 V369I heterozygosity, all cases showed normal PTEN sequence. Immunohistochemical staining for PTEN was strong in all lesions. In conclusion, an increased activation state of AKT kinase appears to be present in cervical carcinogenesis, and may be accounted for by PIK3CA amplification, whereas PTEN mutation seems to be of little importance.


Subject(s)
Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/physiopathology , Gene Amplification , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/metabolism , Uterine Cervical Dysplasia/genetics , Uterine Cervical Dysplasia/physiopathology , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/physiopathology , Carcinoma, Squamous Cell/virology , Cell Transformation, Neoplastic , Class I Phosphatidylinositol 3-Kinases , DNA Damage , Female , Gene Dosage , Gene Expression Profiling , Humans , Immunohistochemistry , PTEN Phosphohydrolase/genetics , Papillomavirus Infections/complications , Phosphorylation , Polymerase Chain Reaction , Uterine Cervical Neoplasms/virology , Uterine Cervical Dysplasia/virology
17.
Genes Chromosomes Cancer ; 44(1): 10-8, 2005 Sep.
Article in English | MEDLINE | ID: mdl-15880589

ABSTRACT

Mutations in two loci encoding cell-cycle-regulatory proteins have been shown to cause familial malignant melanoma. About 20% of melanoma-prone families bear a mutation in the CDKN2A locus, which encodes two unrelated proteins, p16INK4A and p14ARF. Mutations in the other locus, CDK4, are much rarer and have been linked to the disease in only three families worldwide. In the 1960s, a large Norwegian pedigree with multiple atypical nevi and malignant melanomas was identified. Subsequently, six generations and more than 100 family members were traced and 20 cases of melanoma verified. In this article, we report that CDK4 codon 24 is mutated from CGT to CAT (Arg24His) in this unusually large melanoma kindred. Intriguingly, one of the family members had ocular melanoma, but the CDK4 mutation could not be detected in archival tissue samples from this subject. Thus, the case of ocular melanoma in this family was sporadic, suggesting an etiology different from that of the skin tumors. The CDK4 mutation in the Norwegian family was identical to that in melanoma families in France, Australia, and England. Haplotype analysis using microsatellite markers flanking the CDK4 gene and single-nucleotide polymorphisms within the gene did not support the possibility that there was a common founder, but rather indicated at least two independent mutational events. All CDK4 melanoma families known to date have a substitution of amino acid 24. In addition to resulting from selection pressure, this observation may be explained by the CG dinucleotide of codon 24 representing a mutational hot spot in the CDK4 gene.


Subject(s)
Cyclin-Dependent Kinases/genetics , Dysplastic Nevus Syndrome/genetics , Melanoma/genetics , Mutation, Missense , Proto-Oncogene Proteins/genetics , Skin Neoplasms/genetics , Amino Acid Substitution , Australia , Chromosome Mapping , Cyclin-Dependent Kinase 4 , DNA/blood , DNA/genetics , DNA/isolation & purification , England , Eye Neoplasms/genetics , Family , Female , Humans , Male , Norway , Pedigree
SELECTION OF CITATIONS
SEARCH DETAIL
...