Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 3130, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605039

ABSTRACT

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) produces an electrophysiological signature called evoked resonant neural activity (ERNA); a high-frequency oscillation that has been linked to treatment efficacy. However, the single-neuron and synaptic bases of ERNA are unsubstantiated. This study proposes that ERNA is a subcortical neuronal circuit signature of DBS-mediated engagement of the basal ganglia indirect pathway network. In people with Parkinson's disease, we: (i) showed that each peak of the ERNA waveform is associated with temporally-locked neuronal inhibition in the STN; (ii) characterized the temporal dynamics of ERNA; (iii) identified a putative mesocircuit architecture, embedded with empirically-derived synaptic dynamics, that is necessary for the emergence of ERNA in silico; (iv) localized ERNA to the dorsal STN in electrophysiological and normative anatomical space; (v) used patient-wise hotspot locations to assess spatial relevance of ERNA with respect to DBS outcome; and (vi) characterized the local fiber activation profile associated with the derived group-level ERNA hotspot.


Subject(s)
Deep Brain Stimulation , Parkinson Disease , Subthalamic Nucleus , Humans , Parkinson Disease/therapy , Deep Brain Stimulation/methods , Subthalamic Nucleus/physiology , Basal Ganglia/physiology , Neurons/physiology
2.
Neuromodulation ; 27(3): 464-475, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37140523

ABSTRACT

OBJECTIVE: Deep brain stimulation (DBS) is an effective treatment for movement disorders, including Parkinson disease and essential tremor. However, the underlying mechanisms of DBS remain elusive. Despite the capability of existing models in interpreting experimental data qualitatively, there are very few unified computational models that quantitatively capture the dynamics of the neuronal activity of varying stimulated nuclei-including subthalamic nucleus (STN), substantia nigra pars reticulata (SNr), and ventral intermediate nucleus (Vim)-across different DBS frequencies. MATERIALS AND METHODS: Both synthetic and experimental data were used in the model fitting; the synthetic data were generated by an established spiking neuron model that was reported in our previous work, and the experimental data were provided using single-unit microelectrode recordings (MERs) during DBS (microelectrode stimulation). Based on these data, we developed a novel mathematical model to represent the firing rate of neurons receiving DBS, including neurons in STN, SNr, and Vim-across different DBS frequencies. In our model, the DBS pulses were filtered through a synapse model and a nonlinear transfer function to formulate the firing rate variability. For each DBS-targeted nucleus, we fitted a single set of optimal model parameters consistent across varying DBS frequencies. RESULTS: Our model accurately reproduced the firing rates observed and calculated from both synthetic and experimental data. The optimal model parameters were consistent across different DBS frequencies. CONCLUSIONS: The result of our model fitting was in agreement with experimental single-unit MER data during DBS. Reproducing neuronal firing rates of different nuclei of the basal ganglia and thalamus during DBS can be helpful to further understand the mechanisms of DBS and to potentially optimize stimulation parameters based on their actual effects on neuronal activity.


Subject(s)
Deep Brain Stimulation , Subthalamic Nucleus , Humans , Basal Ganglia/physiology , Subthalamic Nucleus/physiology , Thalamus/physiology , Neurons/physiology
3.
Brain ; 146(11): 4456-4468, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37450573

ABSTRACT

Deep brain stimulation is a neuromodulatory treatment for managing the symptoms of Parkinson's disease and other neurological and psychiatric disorders. Electrodes are chronically implanted in disease-relevant brain regions and pulsatile electrical stimulation delivery is intended to restore neurocircuit function. However, the widespread interest in the application and expansion of this clinical therapy has preceded an overarching understanding of the neurocircuit alterations invoked by deep brain stimulation. Over the years, various forms of neurophysiological evidence have emerged which demonstrate changes to brain activity across spatiotemporal resolutions; from single neuron, to local field potential, to brain-wide cortical network effects. Though fruitful, such studies have often led to debate about a singular putative mechanism. In this Update we aim to produce an integrative account of complementary instead of mutually exclusive neurophysiological effects to derive a generalizable concept of the mechanisms of deep brain stimulation. In particular, we offer a critical review of the most common historical competing theories, an updated discussion on recent literature from animal and human neurophysiological studies, and a synthesis of synaptic and network effects of deep brain stimulation across scales of observation, including micro-, meso- and macroscale circuit alterations.


Subject(s)
Deep Brain Stimulation , Parkinson Disease , Animals , Humans , Brain , Electric Stimulation , Neurons/physiology
4.
Brain Commun ; 5(2): fcad033, 2023.
Article in English | MEDLINE | ID: mdl-36895958

ABSTRACT

This scientific commentary refers to 'Globus pallidus internus deep brain stimulation evokes resonant neural activity in Parkinson's disease', by Johnson et al. (https://doi.org/10.1093/braincomms/fcad025).

5.
Brain Stimul ; 15(5): 1223-1232, 2022.
Article in English | MEDLINE | ID: mdl-36058524

ABSTRACT

BACKGROUND: Deep brain stimulation (DBS) provides symptomatic relief in a growing number of neurological indications, but local synaptic dynamics in response to electrical stimulation that may relate to its mechanism of action have not been fully characterized. OBJECTIVE: The objectives of this study were to (1) study local synaptic dynamics during high frequency extracellular stimulation of the subthalamic nucleus (STN), and (2) compare STN synaptic dynamics with those of the neighboring substantia nigra pars reticulata (SNr). METHODS: Two microelectrodes were advanced into the STN and SNr of patients undergoing DBS surgery for Parkinson's disease (PD). Neuronal firing and evoked field potentials (fEPs) were recorded with one microelectrode during stimulation from an adjacent microelectrode. RESULTS: Inhibitory fEPs could be discerned within the STN and their amplitudes predicted bidirectional effects on neuronal firing (p = .013). There were no differences between STN and SNr inhibitory fEP dynamics at low stimulation frequencies (p > .999). However, inhibitory neuronal responses were sustained over time in STN during high frequency stimulation but not in SNr (p < .001) where depression of inhibitory input was coupled with a return of neuronal firing (p = .003). INTERPRETATION: Persistent inhibitory input to the STN suggests a local synaptic mechanism for the suppression of subthalamic firing during high frequency stimulation. Moreover, differences in the resiliency versus vulnerability of inhibitory inputs to the STN and SNr suggest a projection source- and frequency-specificity for this mechanism. The feasibility of targeting electrophysiologically-identified neural structures may provide insight into how DBS achieves frequency-specific modulation of neuronal projections.


Subject(s)
Deep Brain Stimulation , Parkinson Disease , Subthalamic Nucleus , Humans , Microelectrodes , Parkinson Disease/therapy , Substantia Nigra , Subthalamic Nucleus/physiology
6.
Neuroimage ; 262: 119552, 2022 11 15.
Article in English | MEDLINE | ID: mdl-35981644

ABSTRACT

Lead-DBS is an open-source, semi-automatized and widely applied software tool facilitating precise localization of deep brain stimulation electrodes both in native as well as in standardized stereotactic space. While automatized preprocessing steps within the toolbox have been tested and validated in previous studies, the interrater reliability in manual refinements of electrode localizations using the tool has not been objectified so far. Here, we investigate the variance introduced in this processing step by different raters when localizing electrodes based on postoperative CT or MRI. Furthermore, we compare the performance of novel trainees that received a structured training and more experienced raters with an expert user. We show that all users yield similar results with an average difference in localizations ranging between 0.52-0.75 mm with 0.07-0.12 mm increases in variability when using postoperative MRI and following normalization to standard space. Our findings may pave the way toward formal training for using Lead-DBS and demonstrate its reliability and ease-of-use for imaging research in the field of deep brain stimulation.


Subject(s)
Deep Brain Stimulation , Parkinson Disease , Subthalamic Nucleus , Deep Brain Stimulation/methods , Electrodes, Implanted , Humans , Magnetic Resonance Imaging/methods , Parkinson Disease/therapy , Reproducibility of Results , Subthalamic Nucleus/physiology
7.
Proc Natl Acad Sci U S A ; 119(35): e2205881119, 2022 08 30.
Article in English | MEDLINE | ID: mdl-36018837

ABSTRACT

Deep brain stimulation procedures offer an invaluable opportunity to study disease through intracranial recordings from awake patients. Here, we address the relationship between single-neuron and aggregate-level (local field potential; LFP) activities in the subthalamic nucleus (STN) and thalamic ventral intermediate nucleus (Vim) of patients with Parkinson's disease (n = 19) and essential tremor (n = 16), respectively. Both disorders have been characterized by pathologically elevated LFP oscillations, as well as an increased tendency for neuronal bursting. Our findings suggest that periodic single-neuron bursts encode both pathophysiological beta (13 to 33 Hz; STN) and tremor (4 to 10 Hz; Vim) LFP oscillations, evidenced by strong time-frequency and phase-coupling relationships between the bursting and LFP signals. Spiking activity occurring outside of bursts had no relationship to the LFP. In STN, bursting activity most commonly preceded the LFP oscillation, suggesting that neuronal bursting generated within STN may give rise to an aggregate-level LFP oscillation. In Vim, LFP oscillations most commonly preceded bursting activity, suggesting that neuronal firing may be entrained by periodic afferent inputs. In both STN and Vim, the phase-coupling relationship between LFP and high-frequency oscillation (HFO) signals closely resembled the relationships between the LFP and single-neuron bursting. This suggests that periodic single-neuron bursting is likely representative of a higher spatial and temporal resolution readout of periodic increases in the amplitude of HFOs, which themselves may be a higher resolution readout of aggregate-level LFP oscillations. Overall, our results may reconcile "rate" and "oscillation" models of Parkinson's disease and shed light on the single-neuron basis and origin of pathophysiological oscillations in movement disorders.


Subject(s)
Essential Tremor , Neurons , Parkinson Disease , Subthalamic Nucleus , Beta Rhythm , Deep Brain Stimulation , Essential Tremor/physiopathology , Humans , Neurons/physiology , Parkinson Disease/physiopathology , Subthalamic Nucleus/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL