Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Biol ; 22(1): 94, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664795

ABSTRACT

BACKGROUND: Spinal muscular atrophy (SMA) is a devastating neuromuscular disease caused by hypomorphic loss of function in the survival motor neuron (SMN) protein. SMA presents across a broad spectrum of disease severity. Unfortunately, genetic models of intermediate SMA have been difficult to generate in vertebrates and are thus unable to address key aspects of disease etiology. To address these issues, we developed a Drosophila model system that recapitulates the full range of SMA severity, allowing studies of pre-onset biology as well as late-stage disease processes. RESULTS: Here, we carried out transcriptomic and proteomic profiling of mild and intermediate Drosophila models of SMA to elucidate molecules and pathways that contribute to the disease. Using this approach, we elaborated a role for the SMN complex in the regulation of innate immune signaling. We find that mutation or tissue-specific depletion of SMN induces hyperactivation of the immune deficiency (IMD) and Toll pathways, leading to overexpression of antimicrobial peptides (AMPs) and ectopic formation of melanotic masses in the absence of an external challenge. Furthermore, the knockdown of downstream targets of these signaling pathways reduced melanotic mass formation caused by SMN loss. Importantly, we identify SMN as a negative regulator of a ubiquitylation complex that includes Traf6, Bendless, and Diap2 and plays a pivotal role in several signaling networks. CONCLUSIONS: In alignment with recent research on other neurodegenerative diseases, these findings suggest that hyperactivation of innate immunity contributes to SMA pathology. This work not only provides compelling evidence that hyperactive innate immune signaling is a primary effect of SMN depletion, but it also suggests that the SMN complex plays a regulatory role in this process in vivo. In summary, immune dysfunction in SMA is a consequence of reduced SMN levels and is driven by cellular and molecular mechanisms that are conserved between insects and mammals.


Subject(s)
Disease Models, Animal , Immunity, Innate , Muscular Atrophy, Spinal , Signal Transduction , Animals , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/immunology , Drosophila melanogaster/immunology , Drosophila Proteins/genetics , Drosophila Proteins/metabolism
2.
bioRxiv ; 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38168196

ABSTRACT

Background: Spinal Muscular Atrophy (SMA) is a devastating neuromuscular disease caused by hypomorphic loss of function in the Survival Motor Neuron (SMN) protein. SMA presents across broad spectrum of disease severity. Unfortunately, vertebrate models of intermediate SMA have been difficult to generate and are thus unable to address key aspects of disease etiology. To address these issues, we developed a Drosophila model system that recapitulates the full range of SMA severity, allowing studies of pre-onset biology as well as late-stage disease processes. Results: Here, we carried out transcriptomic and proteomic profiling of mild and intermediate Drosophila models of SMA to elucidate molecules and pathways that contribute to the disease. Using this approach, we elaborated a role for the SMN complex in the regulation of innate immune signaling. We find that mutation or tissue-specific depletion of SMN induces hyperactivation of the Immune Deficiency (IMD) and Toll pathways, leading to overexpression of antimicrobial peptides (AMPs) and ectopic formation of melanotic masses in the absence of an external challenge. Furthermore, knockdown of downstream targets of these signaling pathways reduced melanotic mass formation caused by SMN loss. Importantly, we identify SMN as a negative regulator of an ubiquitylation complex that includes Traf6, Bendless and Diap2, and plays a pivotal role in several signaling networks. Conclusions: In alignment with recent research on other neurodegenerative diseases, these findings suggest that hyperactivation of innate immunity contributes to SMA pathology. This work not only provides compelling evidence that hyperactive innate immune signaling is a primary effect of SMN depletion, but it also suggests that the SMN complex plays a regulatory role in this process in vivo. In summary, immune dysfunction in SMA is a consequence of reduced SMN levels and is driven by cellular and molecular mechanisms that are conserved between insects and mammals.

3.
Nucleic Acids Res ; 49(20): 11800-11809, 2021 11 18.
Article in English | MEDLINE | ID: mdl-34581811

ABSTRACT

High fidelity during protein synthesis is accomplished by aminoacyl-tRNA synthetases (aaRSs). These enzymes ligate an amino acid to a cognate tRNA and have proofreading and editing capabilities that ensure high fidelity. Phenylalanyl-tRNA synthetase (PheRS) preferentially ligates a phenylalanine to a tRNAPhe over the chemically similar tyrosine, which differs from phenylalanine by a single hydroxyl group. In bacteria that undergo exposure to oxidative stress such as Salmonella enterica serovar Typhimurium, tyrosine isomer levels increase due to phenylalanine oxidation. Several residues are oxidized in PheRS and contribute to hyperactive editing, including against mischarged Tyr-tRNAPhe, despite these oxidized residues not being directly implicated in PheRS activity. Here, we solve a 3.6 Å cryo-electron microscopy structure of oxidized S. Typhimurium PheRS. We find that oxidation results in widespread structural rearrangements in the ß-subunit editing domain and enlargement of its editing domain. Oxidization also enlarges the phenylalanyl-adenylate binding pocket but to a lesser extent. Together, these changes likely explain why oxidation leads to hyperaccurate editing and decreased misincorporation of tyrosine. Taken together, these results help increase our understanding of the survival of S. Typhimurium during human infection.


Subject(s)
Bacterial Proteins/chemistry , Oxidative Stress , Phenylalanine-tRNA Ligase/chemistry , Bacterial Proteins/metabolism , Binding Sites , Cryoelectron Microscopy , Phenylalanine-tRNA Ligase/metabolism , Salmonella typhimurium/enzymology , Salmonella typhimurium/ultrastructure
4.
PLoS Pathog ; 15(9): e1007948, 2019 09.
Article in English | MEDLINE | ID: mdl-31560731

ABSTRACT

We have used a transposon insertion sequencing (TIS) approach to establish the fitness landscape of the African Salmonella enterica serovar Typhimurium ST313 strain D23580, to complement our previous comparative genomic and functional transcriptomic studies. We used a genome-wide transposon library with insertions every 10 nucleotides to identify genes required for survival and growth in vitro and during infection of murine macrophages. The analysis revealed genomic regions important for fitness under two in vitro growth conditions. Overall, 724 coding genes were required for optimal growth in LB medium, and 851 coding genes were required for growth in SPI-2-inducing minimal medium. These findings were consistent with the essentiality analyses of other S. Typhimurium ST19 and S. Typhi strains. The global mutagenesis approach also identified 60 sRNAs and 413 intergenic regions required for growth in at least one in vitro growth condition. By infecting murine macrophages with the transposon library, we identified 68 genes that were required for intra-macrophage replication but did not impact fitness in vitro. None of these genes were unique to S. Typhimurium D23580, consistent with a high conservation of gene function between S. Typhimurium ST313 and ST19 and suggesting that novel virulence factors are not involved in the interaction of strain D23580 with murine macrophages. We discovered that transposon insertions rarely occurred in many pBT1 plasmid-encoded genes (36), compared with genes carried by the pSLT-BT virulence plasmid and other bacterial plasmids. The key essential protein encoded by pBT1 is a cysteinyl-tRNA synthetase, and our enzymological analysis revealed that the plasmid-encoded CysRSpBT1 had a lower ability to charge tRNA than the chromosomally-encoded CysRSchr enzyme. The presence of aminoacyl-tRNA synthetases in plasmids from a range of Gram-negative and Gram-positive bacteria suggests that plasmid-encoded essential genes are more common than had been appreciated.


Subject(s)
Salmonella typhimurium/physiology , Salmonella typhimurium/pathogenicity , Animals , DNA Transposable Elements , DNA, Bacterial/genetics , Genes, Bacterial , Genetic Fitness , Macrophages/microbiology , Mice , Plasmids/genetics , RAW 264.7 Cells , Salmonella Infections, Animal/microbiology , Salmonella typhimurium/genetics , Virulence/genetics , Virulence/physiology
5.
Proc Natl Acad Sci U S A ; 116(20): 10058-10063, 2019 05 14.
Article in English | MEDLINE | ID: mdl-31036643

ABSTRACT

Accurate translation of the genetic code is maintained in part by aminoacyl-tRNA synthetases (aaRS) proofreading mechanisms that ensure correct attachment of a cognate amino acid to a transfer RNA (tRNA). During environmental stress, such as oxidative stress, demands on aaRS proofreading are altered by changes in the availability of cytoplasmic amino acids. For example, oxidative stress increases levels of cytotoxic tyrosine isomers, noncognate amino acids normally excluded from translation by the proofreading activity of phenylalanyl-tRNA synthetase (PheRS). Here we show that oxidation of PheRS induces a conformational change, generating a partially unstructured protein. This conformational change does not affect Phe or Tyr activation or the aminoacylation activity of PheRS. However, in vitro and ex vivo analyses reveal that proofreading activity to hydrolyze Tyr-tRNAPhe is increased during oxidative stress, while the cognate Phe-tRNAPhe aminoacylation activity is unchanged. In HPX-, Escherichia coli that lack reactive oxygen-scavenging enzymes and accumulate intracellular H2O2, we found that PheRS proofreading is increased by 11%, thereby providing potential protection against hazardous cytoplasmic m-Tyr accumulation. These findings show that in response to oxidative stress, PheRS proofreading is positively regulated without negative effects on the enzyme's housekeeping activity in translation. Our findings also illustrate that while the loss of quality control and mistranslation may be beneficial under some conditions, increased proofreading provides a mechanism for the cell to appropriately respond to environmental changes during oxidative stress.


Subject(s)
Phenylalanine-tRNA Ligase/metabolism , Protein Biosynthesis , Escherichia coli , Oxidation-Reduction , Oxidative Stress , Protein Conformation , Salmonella enterica
6.
IUBMB Life ; 71(8): 1150-1157, 2019 08.
Article in English | MEDLINE | ID: mdl-31135095

ABSTRACT

Translation is the most error-prone process in protein synthesis; however, it is important that accuracy is maintained because erroneous translation has been shown to affect all domains of life. Translational quality control is maintained by both proteins and RNA through intricate processes. The aminoacyl-tRNA synthetases help maintain high levels of translational accuracy through the esterification of tRNA and proofreading mechanisms. tRNA is often recognized by an aminoacyl-tRNA synthetase in a sequence and structurally dependent manner, sometimes involving modified nucleotides. Additionally, some proofreading mechanisms of aminoacyl-tRNA synthetases require tRNA elements for hydrolysis of a noncognate aminoacyl-tRNA. Finally, tRNA is also important for proper decoding of the mRNA message by codon and anticodon pairing. Here, recent developments regarding the importance of tRNA in maintenance of translational accuracy are reviewed. © 2019 IUBMB Life, 2019 © 2019 IUBMB Life, 71(8):1150-1157, 2019.


Subject(s)
Amino Acyl-tRNA Synthetases/metabolism , Gene Expression Regulation , Protein Biosynthesis , RNA, Transfer/genetics , Animals , Anticodon , Codon , Escherichia coli/enzymology , Esters , Humans , Mice , Nucleotides/genetics , Organelles/metabolism , Oxidative Stress , Phenotype , RNA, Messenger/genetics , Ribosomes/metabolism , Saccharomyces cerevisiae/enzymology
7.
Ann Clin Transl Neurol ; 5(9): 1128-1133, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30250868

ABSTRACT

Mutations in FARS2, the gene encoding the mitochondrial phenylalanine-tRNA synthetase (mtPheRS), have been linked to a range of phenotypes including epileptic encephalopathy, developmental delay, and motor dysfunction. We report a 9-year-old boy with novel compound heterozygous variants of FARS2, presenting with a pure spastic paraplegia syndrome associated with bilateral signal abnormalities in the dentate nuclei. Exome sequencing identified a paternal nonsense variant (Q216X) lacking the catalytic core and anticodon-binding regions, and a maternal missense variant (P136H) possessing partial enzymatic activity. This case confirms and expands the phenotype related to FARS2 mutations with regards to clinical presentation and neuroimaging findings.

SELECTION OF CITATIONS
SEARCH DETAIL
...