Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Chemistry ; 30(4): e202302464, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-37909474

ABSTRACT

Bacterial colonization and biofilm formation on abiotic surfaces are initiated by the adhesion of peptides and proteins. Understanding the adhesion of such peptides and proteins at a molecular level thus represents an important step toward controlling and suppressing biofilm formation on technological and medical materials. This study investigates the molecular adhesion of a pilus-derived peptide that facilitates biofilm formation of Pseudomonas aeruginosa, a multidrug-resistant opportunistic pathogen frequently encountered in healthcare settings. Single-molecule force spectroscopy (SMFS) was performed on chemically etched ZnO 11 2 ‾ 0 ${\left(11\bar{2}0\right)}$ surfaces to gather insights about peptide adsorption force and its kinetics. Metal-free click chemistry for the fabrication of peptide-terminated SMFS cantilevers was performed on amine-terminated gold cantilevers and verified by X-ray photoelectron spectroscopy (XPS) and polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS). Atomic force microscopy (AFM) and XPS analyses reveal stable topographies and surface chemistries of the substrates that are not affected by SMFS. Rupture events described by the worm-like chain model (WLC) up to 600 pN were detected for the non-polar ZnO surfaces. The dissociation barrier energy at zero force ΔG(0), the transition state distance xb and bound-unbound dissociation rate at zero force koff (0) for the single crystalline substrate indicate that coordination and hydrogen bonds dominate the peptide/surface interaction.


Subject(s)
Bacterial Adhesion , Zinc Oxide , Pseudomonas aeruginosa , Peptides , Photoelectron Spectroscopy , Microscopy, Atomic Force , Biofilms , Surface Properties
2.
Energy Environ Sci ; 15(10): 4323-4337, 2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36325485

ABSTRACT

Doping halide perovskites (HPs) with extrinsic species, such as alkali metal ions, plays a critical, albeit often elusive role in optimising optoelectronic devices. Here, we use solid state lithium ion battery inspired devices with a polyethylene oxide-based polymer electrolyte to dope HPs controllably with lithium ions. We perform a suite of operando material analysis techniques while dynamically varying Li doping concentrations. We determine and quantify three doping regimes; a safe regime, with doping concentrations of <1020 cm-3 (2% Li : Pb mol%) in which the HP may be modified without detrimental effect to its structure; a minor decomposition regime, in which the HP is partially transformed but remains the dominant species; and a major decomposition regime in which the perovskite is superseded by new phases. We provide a mechanistic description of the processes mediating between each stage and find evidence for metallic Pb(0), LiBr and LiPbBr2 as final decomposition products. Combining results from synchrotron X-ray diffraction measurements with in situ photoluminescence and optical reflection microscopy studies, we distinguish the influences of free charge carriers and intercalated lithium independently. We find that the charge density is equally as important as the geometric considerations of the dopant species and thereby provide a quantitative framework upon which the future design of doped-perovskite energy devices should be based.

3.
Adv Sci (Weinh) ; 9(24): e2201749, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35748161

ABSTRACT

Orbital anisotropy at interfaces in magnetic heterostructures has been key to pioneering spin-orbit-related phenomena. However, modulating the interface's electronic structure to make it abnormally asymmetric has been challenging because of lack of appropriate methods. Here, the authors report that low-energy proton irradiation achieves a strong level of inversion asymmetry and unusual strain at interfaces in [Co/Pd] superlattices through nondestructive, selective removal of oxygen from Co3 O4 /Pd superlattices during irradiation. Structural investigations corroborate that progressive reduction of Co3 O4 into Co establishes pseudomorphic growth with sharp interfaces and atypically large tensile stress. The normal component of orbital to spin magnetic moment at the interface is the largest among those observed in layered Co systems, which is associated with giant orbital anisotropy theoretically confirmed, and resulting very large interfacial magnetic anisotropy is observed. All results attribute not only to giant orbital anisotropy but to enhanced interfacial spin-orbit coupling owing to the pseudomorphic nature at the interface. They are strongly supported by the observation of reversal of polarity of temperature-dependent Anomalous Hall signal, a signature of Berry phase. This work suggests that establishing both giant orbital anisotropy and strong spin-orbit coupling at the interface is key to exploring spintronic devices with new functionalities.

5.
Nanoscale ; 13(32): 13650-13657, 2021 Aug 28.
Article in English | MEDLINE | ID: mdl-34477640

ABSTRACT

Novel preparative approaches towards lamellar nanocomposites of carbon and inorganic materials are relevant for a broad range of technological applications. Here, we describe how to utilize the co-assembly of a liquid-crystalline hexaphenylene amphiphile and an aluminosilicate precursor to prepare carbon-aluminosilicate nanocomposites with controlled lamellar orientation and macroscopic order. To this end, the shear-induced alignment of a precursor phase of the two components resulted in thin films comprising lamellae with periodicities on the order of the molecular length scale, an "edge-on" orientation relative to the substrate and parallel to the shearing direction with order on the centimeter length scale. The lamellar structure, orientation, and macroscopic alignment were preserved in the subsequent pyrolysis that yielded the corresponding carbon-aluminosilicate nanocomposites.

6.
J Chem Phys ; 154(17): 174703, 2021 May 07.
Article in English | MEDLINE | ID: mdl-34241083

ABSTRACT

The solid electrolyte interphase (SEI) is an insulating film on anode surfaces in Li-ion batteries, which forms via the reaction of Li ions with reduced electrolyte species. The SEI leads to a reduction in the electrochemical current in heterogeneous electrochemical redox reactions at the electrode/electrolyte interface. Hence, the growth of the SEI is, in principle, self-limited. Toward our ultimate goal of an improved understanding of SEI formation, we develop a baseline quantitative model within Butler-Volmer electrode kinetics, which describes the cyclic voltammetry (CV) of a flat macroelectrode during SEI growth. Here, the SEI building up electrochemically during CV forms a homogeneous single-phase electronically insulating thin film due to the corresponding current. The model is based on a dynamically evolving electron tunneling barrier with increasing film thickness. Our objective is to provide a framework, which allows for both the qualitative, intuitive interpretation of characteristic features of CV measurements and the quantitative extraction of physicochemical parameters via model fitting. We also discuss the limitations of the baseline model and give a brief outlook for improvements. Finally, comparisons to exemplary CVs from the literature relevant to Li-ion battery science are presented.

7.
ACS Appl Mater Interfaces ; 13(27): 32461-32466, 2021 Jul 14.
Article in English | MEDLINE | ID: mdl-34213306

ABSTRACT

Semiconducting self-assembled monolayers (SAMs) represent highly relevant components for the fabrication of organic thin-film electronics because they enable the precise formation of active π-conjugates in terms of orientation and layer thickness. In this work, we demonstrate self-assembled monolayer field-effect transistors (SAMFETs) composed of phosphonic acid oligomers of 3-hexylthiophene (oligothiophenes-OT) with systematic variations of thiophene repeating units (5, 10, and 20). The devices exhibit stable lateral charge transport with increased mobility as a function of thiophene unit counts. Importantly, our work reveals the packing and intermolecular order of varied-chain-length SAMs at the molecular scale via X-ray reflectivity (XRR) and quantitative X-ray photoelectron spectroscopy (XPS). Short oligomers (OT5-PA and OT10-PA) arrange almost perpendicular to the substrate, forming highly ordered SAMs, whereas the long-chain OT20-PA exhibits a folded structure. By tuning the molecular order in the monolayers via the SAM substitution reaction, the OT20-PA devices show a tripling in mobility.

8.
J Phys Chem B ; 125(17): 4501-4513, 2021 May 06.
Article in English | MEDLINE | ID: mdl-33904299

ABSTRACT

The concept of water-in-salt electrolytes was introduced recently, and these systems have been successfully applied to yield extended operation voltage and hence significantly improved energy density in aqueous Li-ion batteries. In the present work, results of X-ray scattering and Fourier-transform infrared spectra measurements over a wide range of temperatures and salt concentrations are reported for the LiTFSI (lithium bis(trifluoromethane sulfonyl)imide)-based water-in-salt electrolyte. Classical molecular dynamics simulations are validated against the experiments and used to gain additional information about the electrolyte structure. Based on our analyses, a new model for the liquid structure is proposed. Specifically, we demonstrate that at the highest LiTFSI concentration of 20 m the water network is disrupted, and the majority of water molecules exist in the form of isolated monomers, clusters, or small aggregates with chain-like configurations. On the other hand, TFSI- anions are connected to each other and form a network. This description is fundamentally different from those proposed in earlier studies of this system.

9.
Nat Mater ; 20(5): 618-623, 2021 May.
Article in English | MEDLINE | ID: mdl-33398119

ABSTRACT

Excitation localization involving dynamic nanoscale distortions is a central aspect of photocatalysis1, quantum materials2 and molecular optoelectronics3. Experimental characterization of such distortions requires techniques sensitive to the formation of point-defect-like local structural rearrangements in real time. Here, we visualize excitation-induced strain fields in a prototypical member of the lead halide perovskites4 via femtosecond resolution diffuse X-ray scattering measurements. This enables momentum-resolved phonon spectroscopy of the locally distorted structure and reveals radially expanding nanometre-scale strain fields associated with the formation and relaxation of polarons in photoexcited perovskites. Quantitative estimates of the magnitude and shape of this polaronic distortion are obtained, providing direct insights into the dynamic structural distortions that occur in these materials5-9. Optical pump-probe reflection spectroscopy corroborates these results and shows how these large polaronic distortions transiently modify the carrier effective mass, providing a unified picture of the coupled structural and electronic dynamics that underlie the optoelectronic functionality of the hybrid perovskites.

10.
ACS Macro Lett ; 10(10): 1306-1314, 2021 10 19.
Article in English | MEDLINE | ID: mdl-35549036

ABSTRACT

A new class of donor-acceptor (D-A) copolymers found to produce high charge carrier mobilities competitive with amorphous silicon (>1 cm2 V-1 s-1) exhibit the puzzling microstructure of substantial local order, however lacking long-range order and crystallinity previously deemed necessary for achieving high mobility. Here, we demonstrate the application of low-dose transmission electron microscopy to image and quantify the nanoscale and mesoscale organization of an archetypal D-A copolymer across areas comparable to electronic devices (≈9 µm2). The local structure is spatially resolved by mapping the backbone (001) spacing reflection, revealing nanocrystallites of aligned polymer chains throughout nearly the entire film. Analysis of the nanoscale structure of its ordered domains suggests significant short- and medium-range order and preferential grain boundary orientations. Moreover, we provide insights into the rich, interconnected mesoscale organization of this new family of D-A copolymers by analysis of the local orientational spatial autocorrelations.


Subject(s)
Polymers , Thiadiazoles , Polymers/chemistry
11.
Adv Mater ; 32(40): e2003404, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32864811

ABSTRACT

The structure and packing of organic mixed ionic-electronic conductors have an especially significant effect on transport properties. In operating devices, this structure is not fixed but is responsive to changes in electrochemical potential, ion intercalation, and solvent swelling. Toward this end, the steady-state and transient structure of the model organic mixed conductor, poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS), is characterized using multimodal time-resolved operando techniques. Steady-state operando X-ray scattering reveals a doping-induced lamellar expansion of 1.6 Å followed by 0.4 Å relaxation at high doping levels. Time-resolved operando X-ray scattering reveals asymmetric rates of lamellar structural change during doping and dedoping that do not directly depend on potential or charging transients. Time-resolved spectroscopy establishes a link between structural transients and the complex kinetics of electronic charge carrier subpopulations, in particular the polaron-bipolaron equilibrium. These findings provide insight into the factors limiting the response time of organic mixed-conductor-based devices, and present the first real-time observation of the structural changes during doping and dedoping of a conjugated polymer system via X-ray scattering.

12.
Angew Chem Int Ed Engl ; 59(51): 23180-23187, 2020 Dec 14.
Article in English | MEDLINE | ID: mdl-32881197

ABSTRACT

Super-concentrated "water-in-salt" electrolytes recently spurred resurgent interest for high energy density aqueous lithium-ion batteries. Thermodynamic stabilization at high concentrations and kinetic barriers towards interfacial water electrolysis significantly expand the electrochemical stability window, facilitating high voltage aqueous cells. Herein we investigated LiTFSI/H2 O electrolyte interfacial decomposition pathways in the "water-in-salt" and "salt-in-water" regimes using synchrotron X-rays, which produce electrons at the solid/electrolyte interface to mimic reductive environments, and simultaneously probe the structure of surface films using X-ray diffraction. We observed the surface-reduction of TFSI- at super-concentration, leading to lithium fluoride interphase formation, while precipitation of the lithium hydroxide was not observed. The mechanism behind this photoelectron-induced reduction was revealed to be concentration-dependent interfacial chemistry that only occurs among closely contact ion-pairs, which constitutes the rationale behind the "water-in-salt" concept.

13.
Langmuir ; 36(40): 12077-12086, 2020 Oct 13.
Article in English | MEDLINE | ID: mdl-32960065

ABSTRACT

The mechanism behind the stability of organic nanoparticles prepared by liquid antisolvent (LAS) precipitation without a specific stabilizing agent is poorly understood. In this work, we propose that the organic solvent used in the LAS process rapidly forms a molecular stabilizing layer at the interface of the nanoparticles with the aqueous dispersion medium. To confirm this hypothesis, n-octadecyltrichlorosilane (OTS)-functionalized silicon wafers in contact with water-solvent mixtures were used as a flat model system mimicking the solid-liquid interface of the organic nanoparticles. We studied the equilibrium structure of the interface by X-ray reflectometry (XRR) for water-solvent mixtures (methanol, ethanol, 1-propanol, 2-propanol, acetone, and tetrahydrofuran). The formation of an organic solvent-rich layer at the solid-liquid interface was observed. The layer thickness increases with the organic solvent concentration and correlates with the polar and hydrogen bond fraction of Hansen solubility parameters. We developed a self-consistent adsorption model via complementing adsorption isotherms obtained from XRR data with molecular dynamics simulations.

14.
Chemistry ; 26(45): 10265-10275, 2020 Aug 12.
Article in English | MEDLINE | ID: mdl-32356389

ABSTRACT

Crystalline thin films of π-conjugated molecules are relevant as the active layers in organic electronic devices. Therefore, materials with enhanced control over the supramolecular arrangement, crystallinity, and thin-film morphology are desirable. Herein, it is reported that hydrogen-bonded substituents serve as additional structure-directing elements that positively affect crystallization, thin-film morphology, and device performance of p-type organic semiconductors. It is observed that a quaterthiophene diacetamide exhibits a denser packing than that of other quaterthiophenes in the single-crystal structure and, as a result, displays enhanced intermolecular electronic interactions. This feature was preserved in crystalline thin films that exhibited a layer-by-layer morphology, with large domain sizes and high internal order. As a result, organic field-effect transistors of these polycrystalline thin films showed mobilities in the range of the best mobility values reported for single-crystalline quaterthiophenes. The use of hydrogen-bonded groups may, thus, provide an avenue for organic semiconducting materials with improved morphology and performance.

15.
J Chem Phys ; 152(8): 084702, 2020 Feb 28.
Article in English | MEDLINE | ID: mdl-32113337

ABSTRACT

To understand the origins of failure and limited cycle life in lithium-ion batteries (LIBs), it is imperative to quantitatively link capacity-fading mechanisms to electrochemical and chemical processes. This is extremely challenging in real systems where capacity is lost during each cycle to both active material loss and solid electrolyte interphase (SEI) evolution, two indistinguishable contributions in traditional electrochemical measurements. Here, we have used a model system in combination with (1) precision measurements of the overall Coulombic efficiency via electrochemical experiments and (2) x-ray reflectivity measurements of the active material losses. The model system consisted of a 515 Å thick amorphous silicon (a-Si) thin film on silicon carbide in half-cell geometry using a carbonate electrolyte with LiPF6 salt. This approach allowed us to quantify the capacity lost during each cycle due to SEI evolution. Combined with electrochemical analysis, we identify SEI growth as the major contribution to capacity fading. Specifically, the continued SEI growth results in increasing overpotentials due to increased SEI resistance, and this leads to lower extent of lithiation when the cutoff voltage is reached during lithiation. Our results suggest that SEI grows more with increased time spent at low voltages where electrolyte decomposition is favored. Finally, we extracted a proportionality constant for SEI growth following a parabolic growth law. Our methodology allows for the quantitative determination of lithium-ion loss mechanisms in LIBs by separately tracking lithium ions within the active materials and the SEI and offers a powerful method of quantitatively understanding LIB loss mechanisms.

16.
Acc Chem Res ; 52(9): 2673-2683, 2019 Sep 17.
Article in English | MEDLINE | ID: mdl-31479242

ABSTRACT

Electrochemical alloying reactions of group IV elements, such as Si, Ge, or Sn, with lithium provide a promising route to next-generation anode materials for lithium-ion batteries (LIBs) due to their high volumetric and gravimetric capacities. However, commercialization of these anodes is still sparse owing to quick capacity fading and limited Coulombic efficiency, which arise from large volume expansion leading to particle cracking and subsequent electrochemical inactivity. As a result, the solid electrolyte interphase (SEI), originating in the decomposition of the electrolyte upon battery operation outside the electrolyte's thermodynamic stability window, grows uncontrollably. While a large number of mitigation strategies have been developed, an improved nanometer level fundamental understanding of the (de)lithiation process and SEI formation, growth, and evolution is necessary to overcome these challenges. Toward this end, many experimental and theoretical approaches have been utilized but still provide an incomplete picture. This is due to the difficulty of investigating buried interfaces and interphases of lithiation products and thin SEI layers (nanometer-scale) in situ and with the desired nanometer accuracy. In this Account, we illustrate the utilization of in situ X-ray reflectivity (XRR) to provide nanometer-scale insights on the SEI nucleation, growth, and evolution, and well as the (de)lithiation process of Si electrodes. XRR is a nondestructive and surface- and interface-sensitive technique that allows for in situ investigations during battery operation under realistic electrochemical conditions. Insight into the system is provided via the surface-normal density profile, which is interpreted in terms of thickness, density, and roughness of individual surface layers, allowing monitoring of the interfacial morphology and chemistry evolution, through which the SEI growth and Si (de)lithiation process can be resolved. We utilized a model battery anode consisting of a native oxide terminated single crystalline Si wafer in half cell configuration with standard electrolyte in a specifically designed in situ XRR electrochemical cell. We have resolved the nucleation and formation process of the inner inorganic SEI and have observed two well-defined inorganic SEI layers on Si anodes: a bottom-SEI layer (adjacent to the electrode) formed via the lithiation of the native oxide and a top-SEI layer mainly consisting of the electrolyte decomposition product, LiF. This SEI layer grows during lithiation and contracts during delithiation. Further, our results show that the lithiation of crystalline Si (c-Si) is a layer-by-layer, reaction-limited, two-phase process with a well-defined phase boundary between LixSi lithiation product and c-Si; in contrast, the delithiation of LixSi and the lithiation of amorphous Si (a-Si) are reaction-limited, single-phase processes. Moreover, we resolved the influences of current density and the Si crystallographic orientation of the reaction interface on the (de)lithiation process. The implications of our findings are discussed with regard to battery performance.

17.
ACS Appl Mater Interfaces ; 10(32): 26972-26981, 2018 Aug 15.
Article in English | MEDLINE | ID: mdl-29986134

ABSTRACT

Lithium metal anodes can largely enhance the energy density of rechargeable batteries because of the high theoretical capacity and the high negative potential. However, the problem of lithium dendrite formation and low Coulombic efficiency (CE) during electrochemical cycling must be solved before lithium anodes can be widely deployed. Herein, a new atomic layer deposition (ALD) chemistry to realize the low-temperature synthesis of homogeneous and stoichiometric lithium fluoride (LiF) is reported, which then for the first time, as far as we know, is deposited directly onto lithium metal. The LiF preparation is performed at 150 °C yielding 0.8 Å/cycle. The LiF films are found to be crystalline, highly conformal, and stoichiometric with purity levels >99%. Nanoindentation measurements demonstrate the LiF achieving a shear modulus of 58 GPa, 7 times higher than the sufficient value to resist lithium dendrites. When used as the protective coating on lithium, it enables a stable Coulombic efficiency as high as 99.5% for over 170 cycles, about 4 times longer than that of bare lithium anodes. The remarkable battery performance is attributed to the nanosized LiF that serves two critical functions simultaneously: (1) the high dielectric value creates a uniform current distribution for excellent lithium stripping/plating and ultrahigh mechanical strength to suppress lithium dendrites; (2) the great stability and electrolyte isolation by the pure LiF on lithium prevents parasitic reactions for a much improved CE. This new ALD chemistry for conformal LiF not only offers a promising avenue to implement lithium metal anodes for high-capacity batteries but also paves the way for future studies to investigate failure and evolution mechanisms of solid electrolyte interphase (SEI) using our LiF on anodes such as graphite, silicon, and lithium.

18.
Nano Lett ; 18(3): 2105-2111, 2018 03 14.
Article in English | MEDLINE | ID: mdl-29451803

ABSTRACT

The cyclability of silicon anodes in lithium ion batteries (LIBs) is affected by the reduction of the electrolyte on the anode surface to produce a coating layer termed the solid electrolyte interphase (SEI). One of the key steps for a major improvement of LIBs is unraveling the SEI's structure-related diffusion properties as charge and discharge rates of LIBs are diffusion-limited. To this end, we have combined two surface sensitive techniques, sum frequency generation (SFG) vibrational spectroscopy, and X-ray reflectivity (XRR), to explore the first monolayer and to probe the first several layers of electrolyte, respectively, for solutions consisting of 1 M lithium perchlorate (LiClO4) salt dissolved in ethylene carbonate (EC) or fluoroethylene carbonate (FEC) and their mixtures (EC/FEC 7:3 and 1:1 wt %) on silicon and sapphire surfaces. Our results suggest that the addition of FEC to EC solution causes the first monolayer to rearrange itself more perpendicular to the anode surface, while subsequent layers are less affected and tend to maintain their, on average, surface-parallel arrangements. This fundamental understanding of the near-surface orientation of the electrolyte molecules can aid operational strategies for designing high-performance LIBs.

19.
Proc Natl Acad Sci U S A ; 115(6): E1100-E1107, 2018 02 06.
Article in English | MEDLINE | ID: mdl-29358372

ABSTRACT

Interfaces of room temperature ionic liquids (RTILs) are important for both applications and basic science and are therefore intensely studied. However, the evolution of their interface structure with the cation's alkyl chain length [Formula: see text] from Coulomb to van der Waals interaction domination has not yet been studied for even a single broad homologous RTIL series. We present here such a study of the liquid-air interface for [Formula: see text], using angstrom-resolution X-ray methods. For [Formula: see text], a typical "simple liquid" monotonic surface-normal electron density profile [Formula: see text] is obtained, like those of water and organic solvents. For [Formula: see text], increasingly more pronounced nanoscale self-segregation of the molecules' charged moieties and apolar chains yields surface layering with alternating regions of headgroups and chains. The layering decays into the bulk over a few, to a few tens, of nanometers. The layering periods and decay lengths, their linear [Formula: see text] dependence, and slopes are discussed within two models, one with partial-chain interdigitation and the other with liquid-like chains. No surface-parallel long-range order is found within the surface layer. For [Formula: see text], a different surface phase is observed above melting. Our results also impact general liquid-phase issues like supramolecular self-aggregation and bulk-surface structure relations.

20.
ACS Nano ; 11(9): 8747-8757, 2017 09 26.
Article in English | MEDLINE | ID: mdl-28813143

ABSTRACT

Self-assembled monolayer field-effect transistors (SAMFETs) are not only a promising type of organic electronic device but also allow detailed analyses of structure-property correlations. The influence of the morphology on the charge transport is particularly pronounced, due to the confined monolayer of 2D-π-stacked organic semiconductor molecules. The morphology, in turn, is governed by relatively weak van-der-Waals interactions and is thus prone to dynamic structural fluctuations. Accordingly, combining electronic and physical characterization and time-averaged X-ray analyses with the dynamic information available at atomic resolution from simulations allows us to characterize self-assembled monolayer (SAM) based devices in great detail. For this purpose, we have constructed transistors based on SAMs of two molecules that consist of the organic p-type semiconductor benzothieno[3,2-b][1]benzothiophene (BTBT), linked to a C11 or C12 alkylphosphonic acid. Both molecules form ordered SAMs; however, our experiments show that the size of the crystalline domains and the charge-transport properties vary considerably in the two systems. These findings were confirmed by molecular dynamics (MD) simulations and semiempirical molecular-orbital electronic-structure calculations, performed on snapshots from the MD simulations at different times, revealing, in atomistic detail, how the charge transport in organic semiconductors is influenced and limited by dynamic disorder.

SELECTION OF CITATIONS
SEARCH DETAIL
...