Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38892267

ABSTRACT

Food safety and quality are major concerns in the food industry. Despite numerous studies, polyethylene remains one of the most used materials for packaging due to industry reluctance to invest in new technologies and equipment. Therefore, modifications to the current materials are easier to implement than adopting whole new solutions. Antibacterial activity can be induced in low-density polyethylene films only by adding antimicrobial agents. ZnO nanoparticles are well known for their strong antimicrobial activity, coupled with low toxicity and UV shielding capability. These characteristics recommend ZnO for the food industry. By incorporating such safe and dependable antimicrobial agents in the polyethylene matrix, we have obtained composite films able to inhibit microorganisms' growth that can be used as packaging materials. Here we report the obtaining of highly homogenous composite films with up to 5% ZnO by a melt mixing process at 150 °C for 10 min. The composite films present good transparency in the visible domain, permitting consumers to visualize the food, but have good UV barrier properties. The composite films exhibit good antimicrobial and antibiofilm activity from the lowest ZnO composition (1%), against both Gram-positive and Gram-negative bacterial strains. The homogenous dispersion of ZnO nanoparticles into the polyethylene matrix was assessed by Fourier transform infrared microscopy and scanning electron microscopy. The optimal mechanical barrier properties were obtained for composition with 3% ZnO. The thermal analysis indicates that the addition of ZnO nanoparticles has increased thermal stability by more than 100 °C. The UV-Vis spectra indicate a low transmittance in the UV domain, lower than 5%, making the films suitable for blocking photo-oxidation processes. The obtained films proved to be efficient packaging films, successfully preserving plum (Rome) tomatoes for up to 14 days.


Subject(s)
Food Packaging , Polyethylene , Solanum lycopersicum , Zinc Oxide , Zinc Oxide/chemistry , Zinc Oxide/pharmacology , Food Packaging/methods , Polyethylene/chemistry , Solanum lycopersicum/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Microbial Sensitivity Tests , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Biofilms/drug effects
2.
Materials (Basel) ; 16(15)2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37569981

ABSTRACT

Polymeric biocomposites based on TPU/recycled TPUW/mixed leather and SBR rubber waste unmodified/modified with polydimethylsiloxane/PE-g-MA in different percentages were made via the mixing technique on a Plasti-Corder Brabender mixer with an internal capacity of 350 cm3. The waste, which came from the shoe industry, was cryogenically ground with the help of a cryogenic cyclone mill at micrometric sizes and different speeds. For the tests, standard plates of 150 × 150 × 2 mm were obtained in a laboratory-scale hydraulic press via the method of compression between its plates, with well-established parameters. The biocomposites were tested physico-mechanically and rheologically (MFI) according to the standards in force on polymer-specific equipment, also via FT-IR spectroscopy and microscopy, as well as via differential scanning calorimetry-DSC. Following the tests carried out, according to the standard for use in the footwear industry, at least two samples present optimal values (of interest) suitable for use in the footwear industry by injection or pressing in forming moulds.

3.
Materials (Basel) ; 16(6)2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36984033

ABSTRACT

Composites based on natural rubber and plasticized starch obtained by the conventional method of sulfur cross-linking using four types of vulcanization accelerators (Diphenyl guanidine, 2-Mercaptobenzothiazole, N-Cyclohexyl-2-benzothiazole sulfenamide, and Tetramethylthiuram disulfide) were irradiated with an electron beam in the dose range of 150 and 450 kGy for the purpose of degradation. The vulcanization accelerators were used in different percentages and combinations, resulting in four mixtures with different potential during the cross-linking process (synergistic, activator, or additive). The resulting composites were investigated before and after irradiation in order to establish a connection between the type of accelerator mixture, irradiation dose, and composite properties (gel fraction, cross-linking degree, water absorption, mass loss in water and toluene, mechanical properties, and structural and morphological properties). The results showed that the mixtures became sensitive at the irradiation dose of 300 kGy and at the irradiation dose of 450 kGy, and the consequences of the degradation processes were discussed.

4.
Materials (Basel) ; 16(4)2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36837065

ABSTRACT

Hydrolysed collagen obtained from bovine leather by-products were loaded with ginger essential oil and processed by the electrospinning technique for obtaining bioactive nanofibers. Particle size measurements of hydrolysed collagen, GC-MS analysis of ginger essential oil (EO), and structural and SEM examinations of collagen nanofibers loaded with ginger essential oil collected on waxed paper, cotton, and leather supports were performed. Antioxidant and antibacterial activities against Staphylococcus aureus and Escherichia coli and antifungal activity against Candida albicans were also determined. Data show that the hydrolysed collagen nanofibers loaded with ginger EO can be used in the medical, pharmaceutical, cosmetic, or niche fields.

5.
Materials (Basel) ; 15(19)2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36234179

ABSTRACT

EPDM/hemp fiber composites with fiber loading of 0-20 phr were prepared by the blending technique on a laboratory electrically heated roller mill. Test specimens were obtained by vulcanization using a laboratory hydraulic press. The elastomer crosslinking and the chemical modification of the hemp fiber surface were achieved by a radical reaction mechanism initiated by di(tert-butylperoxyisopropyl)benzene. The influence of the fiber loading on the mechanical properties, gel fraction, swelling ratio and crosslink degree was investigated. The gel fraction, crosslink density and rubber-hemp fiber interaction were evaluated based on equilibrium solvent-swelling measurements using the Flory-Rehner relation and Kraus and Lorenz-Park equations. The morphology of the EPDM/hemp fiber composites was analyzed by scanning electron microscopy. The water absorption increases as the hemp fiber loading increases.

6.
Int J Mol Sci ; 23(13)2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35805934

ABSTRACT

Composites based on natural rubber reinforced with mineral (precipitated silica and chalk) and organic (sawdust and hemp) fillers in amount of 50 phr were obtained by peroxide cross-linking in the presence of trimethylolpropane trimethacrylate and irradiated by electron beam in the dose range of 150 and 450 kGy with the purpose of degradation. The composites mechanical characteristics, gel fraction, cross-linking degree, water uptake and weight loss in water and toluene were evaluated by specific analysis. The changes in structure and morphology were also studied by Fourier Transform Infrared Spectroscopy and Scanning Electron Microscopy. Based on the results obtained in the structural analysis, possible mechanisms specific to degradation are proposed. The increasing of irradiation dose to 450 kGy produced larger agglomerated structures, cracks and micro voids on the surface, as a result of the degradation process. This is consistent with that the increasing of irradiation dose to 450 kGy leads to a decrease in crosslinking and gel fraction but also drastic changes in mechanical properties specific to the composites' degradation processes. The irradiation of composites reinforced with organic fillers lead to the formation of specific degradation compounds of both natural rubber and cellulose (aldehydes, ketones, carboxylic acids, compounds with small macromolecules). In the case of the composites reinforced with mineral fillers the degradation can occur by the cleavage of hydrogen bonds formed between precipitated silica or chalk particles and polymeric matrix also.


Subject(s)
Electrons , Rubber , Calcium Carbonate , Rubber/chemistry , Silicon Dioxide/chemistry , Water
7.
Polymers (Basel) ; 13(15)2021 Jul 31.
Article in English | MEDLINE | ID: mdl-34372157

ABSTRACT

This paper deals with the dielectric and sorption properties of some flax fiber-reinforced ethylene-propylene-diene monomer (EPDM) composites containing different fiber loadings as well as their behavior after exposure to different doses of electron beam irradiation. Three relaxation processes were evinced, a weak relaxation ß at sub-Tg temperatures and two α-type relaxations above the Tg. The EPDM/flax composites exhibited higher values of dielectric constant, dielectric loss and conductivity as compared to a pristine EPDM sample. Using thermogravimetric analysis (TG) coupled with Fourier transform infrared spectroscopy (FTIR) and mass spectrometry (MS) (TG/FTIR/MS system), the degradation products can be identified. The water uptake increased as the flax fiber level increased in composites. The water uptake tests of irradiated composites showed that the highest water content was obtained for a flax fiber level of 20 phr.

8.
Materials (Basel) ; 14(16)2021 Aug 18.
Article in English | MEDLINE | ID: mdl-34443179

ABSTRACT

Rubber-based wastes represent challenges facing the global community. Human health protection and preservation of environmental quality are strong reasons to find more efficient methods to induce degradation of latex/rubber products in order to replace devulcanization, incineration, or simply storage, and electron beam irradiation is a promising method that can be can be taken into account. Polymeric composites based on natural rubber and plasticized starch in amounts of 10 to 50 phr, obtained by benzoyl peroxide cross-linking, were subjected to 5.5 MeV electron beam irradiation in order to induce degradation, in the dose range of 150 to 450 kGy. A qualitative study was conducted on the kinetics of water absorption in these composites in order to appreciate their degradation degree. The percentages of equilibrium sorption and mass loss after equilibrium sorption were found to be dependent on irradiation dose and amount of plasticized starch. The mechanism of water transport in composites was studied not only through the specific absorption and diffusion parameters but also by the evaluation of the diffusion, intrinsic diffusion, permeation, and absorption coefficients.

9.
Polymers (Basel) ; 13(12)2021 Jun 11.
Article in English | MEDLINE | ID: mdl-34208234

ABSTRACT

Polymeric composites based on natural rubber (NR) and plasticized starch (PS) obtained by peroxide cross-linking have been subjected to electron beam irradiation in order to investigate their degradation. The amount of PS ranged from 10 to 50 phr and the irradiation dose from 150 to 450 kGy. Irradiation was performed in atmospheric conditions using a linear electron accelerator of 5.5 MeV. Changes in chemical, physical, structural, and morphological properties of composites were correlated with variables, such as PS loading and irradiation dose. Thus, mechanical properties, gel fraction, cross-linking degree, water uptake, weight loss in toluene/water were compared with those obtained before irradiation. The changes in structure and morphology were studied by Fourier Transform Infrared Spectroscopy and Scanning Electron Microscopy. Both PS loading and irradiation dose were found to be responsible for the degradation installing. Moreover, it has been shown that at the dose of 450 kGy, chain scission is dominant over cross-linking.

10.
Polymers (Basel) ; 12(10)2020 Oct 21.
Article in English | MEDLINE | ID: mdl-33096863

ABSTRACT

Composites based on ethylene-propylene-diene terpolymer (EPDM), butyl/halobutyl rubber and nanosilica were prepared by melt mixing and subjected to different doses of electron beam irradiation. The effect of irradiation dose on the mechanical properties, morphology, glass transition temperature, thermal stability and water uptake was investigated. The efficiency of the crosslinking by electron beam irradiation was analyzed by Charlesby-Pinner parameter evaluation and crosslink density measurements. The scanning electron microscopy data showed a good dispersion of nanosilica in the rubber matrix. An improvement in hardness and 100% modulus was revealed by increasing irradiation dose up to 150 kGy. The interaction between polymer matrix and nanosilica was analyzed using the Kraus equation. Additionally, these results indicated that the mechanical properties, surface characteristics, and water uptake were dependent on crosslink characteristics.

11.
Materials (Basel) ; 13(9)2020 Apr 30.
Article in English | MEDLINE | ID: mdl-32365824

ABSTRACT

The paper presents the obtaining of new green polymeric composites using a sustainable reactive processing method, namely electron beam irradiation. EPDM rubber mixtures were reinforced with different amounts of short hemp fibers, which were then irradiated at doses between 75 and 600 kGy. The samples were analyzed by determination of physical-mechanical properties, sol-gel analysis, crosslink density (using the well-known modified Flory-Rehner equation for tetra functional networks), determination of rubber-fiber interactions (using the Kraus equation), water uptake test and FTIR analysis. The obtained results indicate an improvement of the hardness, the tensile and tear strength as the quantity of hemp fibers increases. As the irradiation dose increases, there is an increase in the degree of crosslinking and the gel fraction. Analyzing the behavior of the irradiation samples using the Charlesby-Pinner equation, it is observed that all the samples tend to crosslink by irradiation, the share of degradation reactions being low. For these reasons, the new materials can be used in the food, pharmaceutical or medical field, because the obtained products are sterile and can be easily resterilized by irradiation. They have high elasticity values and can be used to make packaging, seals and other consumer goods.

12.
Polymers (Basel) ; 12(1)2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31952265

ABSTRACT

A natural fiber reinforced composite, belonging to the class of eco composites, based on ethylene-propylene-terpolymer rubber (EPDM) and wood wastes were obtained by electron beam irradiation at 75, 150, 300, and 600 kGy in atmospheric conditions and at room temperature using a linear accelerator of 5.5 MeV. The sawdust (S), in amounts of 5 and 15 phr, respectively, was used to act as a natural filler for the improvement of physical and chemical characteristics. The cross-linking effects were evaluated through sol-gel analysis, mechanical tests, and Fourier Transform Infrared FTIR spectroscopy comparatively with the classic method with dibenzoyl peroxide (P) applied on the same types of samples at high temperature. Gel fraction exhibits values over 98% but, in the case of P cross-linking, is necessary to add more sawdust (15 phr) to obtain the same results as in the case of electron beam (EB) cross-linking (5 phr/300 kGy). Even if the EB cross-linking and sawdust addition have a reinforcement effect on EPDM rubber, the medium irradiation dose of 300 kGy looks to be a limit to which or from which the properties of the composite are improved or deteriorated. The absorption behavior of the eco-composites was studied through water uptake tests.

13.
Int J Mol Sci ; 19(10)2018 Sep 20.
Article in English | MEDLINE | ID: mdl-30241399

ABSTRACT

The obtaining and characterization of some environmental-friendly composites that are based on natural rubber and plasticized starch, as filler, are presented. These were obtained by peroxide cross-linking in the presence of a polyfunctional monomer used here as cross-linking co-agent, trimethylolpropane trimethacrylate. The influence of plasticized starch amount on the composites physical and mechanical characteristics, gel fraction and cross-link density, water uptake, structure and morphology before and after accelerated (thermal) degradation, and natural (for one year in temperate climate) ageing, was studied. Differences of two orders of magnitude between the degradation/aging methods were registered in the case of some mechanical characteristics, by increasing the plasticized starch amount. The cross-link density, water uptake and mass loss were also significant affected by the plasticized starch amount increasing and exposing for one year to natural ageing in temperate climate. Based on the results of Fourier Transform Infrared Spectroscopy (FTIR) and cross-link density measurements, reaction mechanisms attributed to degradation induced by accelerated and natural ageing were done. SEM micrographs have confirmed in addition that by incorporating a quantity of hydrophilic starch amount over 20 phr and by exposing the composites to natural ageing, and then degradability can be enhanced by comparing with thermal degradation.


Subject(s)
Peroxides/chemistry , Rubber/chemistry , Solanum tuberosum , Starch/chemistry , Microscopy, Electron, Scanning , Spectroscopy, Fourier Transform Infrared , Starch/ultrastructure
14.
Polymers (Basel) ; 10(11)2018 Oct 30.
Article in English | MEDLINE | ID: mdl-30961131

ABSTRACT

The effects of electron beam irradiation on the properties of ethylene propylene diene monomer (EPDM)/butyl rubber composites in presence of a polyfunctional monomer were investigated by means of differential scanning calorimetry (DSC), thermal analysis, scanning electron microscopy (SEM), attenuated total reflection absorption infrared spectroscopy (ATR-IR), and mechanical and surface energy measurements. The samples were exposed over a wide range of irradiation doses (20⁻150 kGy). The EPDM matrix was modified with butyl rubber, chlorobutyl rubber, and bromobutyl rubber. The gel content and crosslink density were found to increase with the electron beam irradiation dose. The values of the hardness and modulus increased gradually with the irradiation dose, while the tensile strength and elongation at break decreased with increasing irradiation dose. The EPDM/butyl rubber composites presented a higher thermal stability compared to the initial EPDM sample. The incorporation of butyl rubbers into the EPDM matrix led to an increase in material hydrophobicity. A similar trend was observed when the irradiation dose increased. The greatest change in the surface free energy and the contact angles occurs at an irradiation dose of 20 kGy. The Charlesby⁻Pinner plots prove the tendency to crosslinking as the irradiation dose increases.

15.
Materials (Basel) ; 10(7)2017 Jul 11.
Article in English | MEDLINE | ID: mdl-28773145

ABSTRACT

Natural rubber composites filled with short natural fibers (flax and sawdust) were prepared by blending procedure and the elastomer cross-linking was carried out using benzoyl peroxide. The microbial degradation of composites was carried out by incubating with Aspergillus niger recognized for the ability to grow and degrade a broad range of substrates. The extent of biodegradation was evaluated by weight loss and cross-linking degree study of composites after 2 months incubation in pure shake culture conditions. Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR) have proved to be precious and valuable instruments for morphological as well as structural characterization of the composites before and after incubation with Aspergillus niger.

16.
Materials (Basel) ; 9(7)2016 Jun 23.
Article in English | MEDLINE | ID: mdl-28773626

ABSTRACT

The obtaining and characterization of some polymeric eco-composites based on wood sawdust and natural rubber is presented. The natural rubber was cross-linked using the electron beam irradiation. The irradiation doses were of 75, 150, 300 and 600 kGy and the concentrations of wood sawdust were of 10 and 20 phr, respectively. As a result of wood sawdust adding, the physical and mechanical properties such as hardness, modulus at 100% elongation and tensile strength, showed significant improvements. The presence of wood sawdust fibers has a reinforcing effect on natural rubber, similar or better than of mineral fillers. An increase in the irradiation dose leads to the increasing of cross-link density, which is reflected in the improvement of hardness, modulus at 100% elongation and tensile strength of blends. The cross-linking rates, appreciated using the Flory-Rehner equation, have increased with the amount of wood sawdust in blends and with the irradiation dose. Even if the gel fraction values have varied irregularly with the amount of wood sawdust and irradiation dose it was over 90% for all blends, except for the samples without wood sawdust irradiated with 75 kGy. The water uptake increased with increasing of fiber content and decreased with the irradiation dose.

17.
Materials (Basel) ; 9(12)2016 Dec 21.
Article in English | MEDLINE | ID: mdl-28774150

ABSTRACT

The efficiency of polyfunctional monomers as cross-linking co-agents on the chemical properties of natural rubber vulcanized by electron beam irradiation was studied. The following polyfunctional monomers were used: trimethylolpropane-trimethacrylate, zinc-diacrylate, ethylene glycol dimethacrylate, triallylcyanurate and triallylisocyanurate. The electron beam treatment was done using irradiation doses in the range of 75 kGy-300 kGy. The gel fraction, crosslink density and effects of different aqueous solutions, by absorption tests, have been investigated as a function of polyfunctional monomers type and absorbed dose. The samples gel fraction and crosslink density were determined on the basis of equilibrium solvent-swelling measurements by applying the modified Flory-Rehner equation for tetra functional networks. The absorption tests were done in accordance with the SR ISI 1817:2015 using distilled water, acetic acid (10%), sodium hydroxide (1%), ethylic alcohol (96%), physiological serum (sodium chloride 0.9%) and glucose (glucose monohydrate 10%). The samples structure and morphology were investigated by Fourier Transform Infrared Spectroscopy and Scanning Electron Microscopy techniques.

18.
Bioinorg Chem Appl ; 2014: 763269, 2014.
Article in English | MEDLINE | ID: mdl-25276112

ABSTRACT

This paper presents the improvement of the antimicrobial character of woven fabrics based on cotton. The woven fabrics were cleaned in oxygen plasma and treated by padding with silver chloride and titanium dioxide particles. The existence of silver and titanium on woven fabrics was evidenced by electronic microscope images (SEM, EDAX) and by flame atomic absorption spectrophotometry. The antimicrobial tests were performed with two fungi: Candida albicans and Trichophyton interdigitale. The obtained antimicrobial effect was considerably higher compared to the raw fabrics. Treatment of dyed fabrics with a colloidal solution based on silver chloride and titanium dioxide particles does not considerably influence colour resistance of dyes.

19.
ScientificWorldJournal ; 2014: 684047, 2014.
Article in English | MEDLINE | ID: mdl-24688419

ABSTRACT

A new polymeric composite based on natural rubber reinforced with hemp has been processed by electron beam irradiation and characterized by several methods. The mechanical characteristics: gel fraction, crosslink density, water uptake, swelling parameters, and FTIR of natural rubber/hemp fiber composites have been investigated as a function of the hemp content and absorbed dose. Physical and mechanical properties present a significant improvement as a result of adding hemp fibres in blends. Our experiments showed that the hemp fibers have a reinforcing effect on natural rubber similar to mineral fillers (chalk, carbon black, silica). The crosslinking rates of samples, measured using the Flory-Rehner equation, increase as a result of the amount of hemp in blends and the electron beam irradiation dose increasing. The swelling parameters of samples significantly depend on the amount of hemp in blends, because the latter have hydrophilic characteristics.


Subject(s)
Cannabis/chemistry , Electrons , Rubber/chemistry , Cannabis/radiation effects , Elasticity , Rubber/radiation effects , Tensile Strength
SELECTION OF CITATIONS
SEARCH DETAIL
...