Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Clin Perinatol ; 51(2): 345-360, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705645

ABSTRACT

Multiple studies have hinted at a complex connection between maternal stress and preterm birth (PTB). This article describes the potential of computational methods to provide new insights into this relationship. For this, we outline existing approaches for stress assessments and various data modalities available for profiling stress responses, and review studies that sought either to establish a connection between stress and PTB or to predict PTB based on stress-related factors. Finally, we summarize the challenges of computational methods, highlighting potential future research directions within this field.


Subject(s)
Premature Birth , Stress, Psychological , Humans , Female , Pregnancy , Infant, Newborn
2.
Clin Perinatol ; 51(2): 441-459, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705651

ABSTRACT

Throughout pregnancy, the maternal peripheral circulation contains valuable information reflecting pregnancy progression, detectable as tightly regulated immune dynamics. Local immune processes at the maternal-fetal interface and other reproductive and non-reproductive tissues are likely to be the pacemakers for this peripheral immune "clock." This cellular immune status of pregnancy can be leveraged for the early risk assessment and prediction of spontaneous preterm birth (sPTB). Systems immunology approaches to sPTB subtypes and cross-tissue (local and peripheral) interactions, as well as integration of multiple biological data modalities promise to improve our understanding of preterm birth pathobiology and identify potential clinically actionable biomarkers.


Subject(s)
Premature Birth , Humans , Pregnancy , Female , Premature Birth/immunology , Biomarkers , Risk Assessment , Infant, Newborn
3.
bioRxiv ; 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38496400

ABSTRACT

Postoperative cognitive decline (POCD) is the predominant complication affecting elderly patients following major surgery, yet its prediction and prevention remain challenging. Understanding biological processes underlying the pathogenesis of POCD is essential for identifying mechanistic biomarkers to advance diagnostics and therapeutics. This longitudinal study involving 26 elderly patients undergoing orthopedic surgery aimed to characterize the impact of peripheral immune cell responses to surgical trauma on POCD. Trajectory analyses of single-cell mass cytometry data highlighted early JAK/STAT signaling exacerbation and diminished MyD88 signaling post-surgery in patients who developed POCD. Further analyses integrating single-cell and plasma proteomic data collected before surgery with clinical variables yielded a sparse predictive model that accurately identified patients who would develop POCD (AUC = 0.80). The resulting POCD immune signature included one plasma protein and ten immune cell features, offering a concise list of biomarker candidates for developing point-of-care prognostic tests to personalize perioperative management of at-risk patients. The code and the data are documented and available at https://github.com/gregbellan/POCD . Teaser: Modeling immune cell responses and plasma proteomic data predicts postoperative cognitive decline.

4.
Nat Biotechnol ; 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38168992

ABSTRACT

Adoption of high-content omic technologies in clinical studies, coupled with computational methods, has yielded an abundance of candidate biomarkers. However, translating such findings into bona fide clinical biomarkers remains challenging. To facilitate this process, we introduce Stabl, a general machine learning method that identifies a sparse, reliable set of biomarkers by integrating noise injection and a data-driven signal-to-noise threshold into multivariable predictive modeling. Evaluation of Stabl on synthetic datasets and five independent clinical studies demonstrates improved biomarker sparsity and reliability compared to commonly used sparsity-promoting regularization methods while maintaining predictive performance; it distills datasets containing 1,400-35,000 features down to 4-34 candidate biomarkers. Stabl extends to multi-omic integration tasks, enabling biological interpretation of complex predictive models, as it hones in on a shortlist of proteomic, metabolomic and cytometric events predicting labor onset, microbial biomarkers of pre-term birth and a pre-operative immune signature of post-surgical infections. Stabl is available at https://github.com/gregbellan/Stabl .

5.
Nat Comput Sci ; 3(4): 346-359, 2023 Apr.
Article in English | MEDLINE | ID: mdl-38116462

ABSTRACT

Advanced measurement and data storage technologies have enabled high-dimensional profiling of complex biological systems. For this, modern multiomics studies regularly produce datasets with hundreds of thousands of measurements per sample, enabling a new era of precision medicine. Correlation analysis is an important first step to gain deeper insights into the coordination and underlying processes of such complex systems. However, the construction of large correlation networks in modern high-dimensional datasets remains a major computational challenge owing to rapidly growing runtime and memory requirements. Here we address this challenge by introducing CorALS (Correlation Analysis of Large-scale (biological) Systems), an open-source framework for the construction and analysis of large-scale parametric as well as non-parametric correlation networks for high-dimensional biological data. It features off-the-shelf algorithms suitable for both personal and high-performance computers, enabling workflows and downstream analysis approaches. We illustrate the broad scope and potential of CorALS by exploring perspectives on complex biological processes in large-scale multiomics and single-cell studies.

6.
iScience ; 26(12): 108486, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38125025

ABSTRACT

Oral squamous cell carcinoma (OSCC), a prevalent and aggressive neoplasm, poses a significant challenge due to poor prognosis and limited prognostic biomarkers. Leveraging highly multiplexed imaging mass cytometry, we investigated the tumor immune microenvironment (TIME) in OSCC biopsies, characterizing immune cell distribution and signaling activity at the tumor-invasive front. Our spatial subsetting approach standardized cellular populations by tissue zone, improving feature reproducibility and revealing TIME patterns accompanying loss-of-differentiation. Employing a machine-learning pipeline combining reliable feature selection with multivariable modeling, we achieved accurate histological grade classification (AUC = 0.88). Three model features correlated with clinical outcomes in an independent cohort: granulocyte MAPKAPK2 signaling at the tumor front, stromal CD4+ memory T cell size, and the distance of fibroblasts from the tumor border. This study establishes a robust modeling framework for distilling complex imaging data, uncovering sentinel characteristics of the OSCC TIME to facilitate prognostic biomarkers discovery for recurrence risk stratification and immunomodulatory therapy development.

7.
Sci Adv ; 9(21): eade7692, 2023 05 24.
Article in English | MEDLINE | ID: mdl-37224249

ABSTRACT

Preterm birth (PTB) is the leading cause of death in children under five, yet comprehensive studies are hindered by its multiple complex etiologies. Epidemiological associations between PTB and maternal characteristics have been previously described. This work used multiomic profiling and multivariate modeling to investigate the biological signatures of these characteristics. Maternal covariates were collected during pregnancy from 13,841 pregnant women across five sites. Plasma samples from 231 participants were analyzed to generate proteomic, metabolomic, and lipidomic datasets. Machine learning models showed robust performance for the prediction of PTB (AUROC = 0.70), time-to-delivery (r = 0.65), maternal age (r = 0.59), gravidity (r = 0.56), and BMI (r = 0.81). Time-to-delivery biological correlates included fetal-associated proteins (e.g., ALPP, AFP, and PGF) and immune proteins (e.g., PD-L1, CCL28, and LIFR). Maternal age negatively correlated with collagen COL9A1, gravidity with endothelial NOS and inflammatory chemokine CXCL13, and BMI with leptin and structural protein FABP4. These results provide an integrated view of epidemiological factors associated with PTB and identify biological signatures of clinical covariates affecting this disease.


Subject(s)
Premature Birth , Infant, Newborn , Pregnancy , Child , Humans , Female , Premature Birth/epidemiology , Developing Countries , Multiomics , Proteomics , Chemokines, CC
8.
Res Sq ; 2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36909508

ABSTRACT

High-content omic technologies coupled with sparsity-promoting regularization methods (SRM) have transformed the biomarker discovery process. However, the translation of computational results into a clinical use-case scenario remains challenging. A rate-limiting step is the rigorous selection of reliable biomarker candidates among a host of biological features included in multivariate models. We propose Stabl, a machine learning framework that unifies the biomarker discovery process with multivariate predictive modeling of clinical outcomes by selecting a sparse and reliable set of biomarkers. Evaluation of Stabl on synthetic datasets and four independent clinical studies demonstrates improved biomarker sparsity and reliability compared to commonly used SRMs at similar predictive performance. Stabl readily extends to double- and triple-omics integration tasks and identifies a sparser and more reliable set of biomarkers than those selected by state-of-the-art early- and late-fusion SRMs, thereby facilitating the biological interpretation and clinical translation of complex multi-omic predictive models. The complete package for Stabl is available online at https://github.com/gregbellan/Stabl.

9.
Cytometry A ; 103(5): 392-404, 2023 05.
Article in English | MEDLINE | ID: mdl-36507780

ABSTRACT

Technologies for single-cell profiling of the immune system have enabled researchers to extract rich interconnected networks of cellular abundance, phenotypical and functional cellular parameters. These studies can power machine learning approaches to understand the role of the immune system in various diseases. However, the performance of these approaches and the generalizability of the findings have been hindered by limited cohort sizes in translational studies, partially due to logistical demands and costs associated with longitudinal data collection in sufficiently large patient cohorts. An evolving challenge is the requirement for ever-increasing cohort sizes as the dimensionality of datasets grows. We propose a deep learning model derived from a novel pipeline of optimal temporal cell matching and overcomplete autoencoders that uses data from a small subset of patients to learn to forecast an entire patient's immune response in a high dimensional space from one timepoint to another. In our analysis of 1.08 million cells from patients pre- and post-surgical intervention, we demonstrate that the generated patient-specific data are qualitatively and quantitatively similar to real patient data by demonstrating fidelity, diversity, and usefulness.


Subject(s)
Machine Learning , Neural Networks, Computer , Humans , Proteomics
10.
Patterns (N Y) ; 3(12): 100655, 2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36569558

ABSTRACT

Preeclampsia is a complex disease of pregnancy whose physiopathology remains unclear. We developed machine-learning models for early prediction of preeclampsia (first 16 weeks of pregnancy) and over gestation by analyzing six omics datasets from a longitudinal cohort of pregnant women. For early pregnancy, a prediction model using nine urine metabolites had the highest accuracy and was validated on an independent cohort (area under the receiver-operating characteristic curve [AUC] = 0.88, 95% confidence interval [CI] [0.76, 0.99] cross-validated; AUC = 0.83, 95% CI [0.62,1] validated). Univariate analysis demonstrated statistical significance of identified metabolites. An integrated multiomics model further improved accuracy (AUC = 0.94). Several biological pathways were identified including tryptophan, caffeine, and arachidonic acid metabolisms. Integration with immune cytometry data suggested novel associations between immune and proteomic dynamics. While further validation in a larger population is necessary, these encouraging results can serve as a basis for a simple, early diagnostic test for preeclampsia.

11.
Front Pediatr ; 10: 933266, 2022.
Article in English | MEDLINE | ID: mdl-36582513

ABSTRACT

Psychosocial and stress-related factors (PSFs), defined as internal or external stimuli that induce biological changes, are potentially modifiable factors and accessible targets for interventions that are associated with adverse pregnancy outcomes (APOs). Although individual APOs have been shown to be connected to PSFs, they are biologically interconnected, relatively infrequent, and therefore challenging to model. In this context, multi-task machine learning (MML) is an ideal tool for exploring the interconnectedness of APOs on the one hand and building on joint combinatorial outcomes to increase predictive power on the other hand. Additionally, by integrating single cell immunological profiling of underlying biological processes, the effects of stress-based therapeutics may be measurable, facilitating the development of precision medicine approaches. Objectives: The primary objectives were to jointly model multiple APOs and their connection to stress early in pregnancy, and to explore the underlying biology to guide development of accessible and measurable interventions. Materials and Methods: In a prospective cohort study, PSFs were assessed during the first trimester with an extensive self-filled questionnaire for 200 women. We used MML to simultaneously model, and predict APOs (severe preeclampsia, superimposed preeclampsia, gestational diabetes and early gestational age) as well as several risk factors (BMI, diabetes, hypertension) for these patients based on PSFs. Strongly interrelated stressors were categorized to identify potential therapeutic targets. Furthermore, for a subset of 14 women, we modeled the connection of PSFs to the maternal immune system to APOs by building corresponding ML models based on an extensive single cell immune dataset generated by mass cytometry time of flight (CyTOF). Results: Jointly modeling APOs in a MML setting significantly increased modeling capabilities and yielded a highly predictive integrated model of APOs underscoring their interconnectedness. Most APOs were associated with mental health, life stress, and perceived health risks. Biologically, stressors were associated with specific immune characteristics revolving around CD4/CD8 T cells. Immune characteristics predicted based on stress were in turn found to be associated with APOs. Conclusions: Elucidating connections among stress, multiple APOs simultaneously, and immune characteristics has the potential to facilitate the implementation of ML-based, individualized, integrative models of pregnancy in clinical decision making. The modifiable nature of stressors may enable the development of accessible interventions, with success tracked through immune characteristics.

13.
Cell Rep Med ; 3(7): 100680, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35839768

ABSTRACT

The biological determinants underlying the range of coronavirus 2019 (COVID-19) clinical manifestations are not fully understood. Here, over 1,400 plasma proteins and 2,600 single-cell immune features comprising cell phenotype, endogenous signaling activity, and signaling responses to inflammatory ligands are cross-sectionally assessed in peripheral blood from 97 patients with mild, moderate, and severe COVID-19 and 40 uninfected patients. Using an integrated computational approach to analyze the combined plasma and single-cell proteomic data, we identify and independently validate a multi-variate model classifying COVID-19 severity (multi-class area under the curve [AUC]training = 0.799, p = 4.2e-6; multi-class AUCvalidation = 0.773, p = 7.7e-6). Examination of informative model features reveals biological signatures of COVID-19 severity, including the dysregulation of JAK/STAT, MAPK/mTOR, and nuclear factor κB (NF-κB) immune signaling networks in addition to recapitulating known hallmarks of COVID-19. These results provide a set of early determinants of COVID-19 severity that may point to therapeutic targets for prevention and/or treatment of COVID-19 progression.


Subject(s)
COVID-19 , Humans , NF-kappa B/metabolism , Proteomics , SARS-CoV-2 , Signal Transduction
14.
Semin Immunopathol ; 44(6): 747-766, 2022 11.
Article in English | MEDLINE | ID: mdl-35508672

ABSTRACT

The immune system establishes during the prenatal period from distinct waves of stem and progenitor cells and continuously adapts to the needs and challenges of early postnatal and adult life. Fetal immune development not only lays the foundation for postnatal immunity but establishes functional populations of tissue-resident immune cells that are instrumental for fetal immune responses amidst organ growth and maturation. This review aims to discuss current knowledge about the development and function of tissue-resident immune populations during fetal life, focusing on the brain, lung, and gastrointestinal tract as sites with distinct developmental trajectories. While recent progress using system-level approaches has shed light on the fetal immune landscape, further work is required to describe precise roles of prenatal immune populations and their migration and adaptation to respective organ environments. Defining points of prenatal susceptibility to environmental challenges will support the search for potential therapeutic targets to positively impact postnatal health.


Subject(s)
Fetal Development , Fetus , Pregnancy , Adult , Female , Humans , Brain , Immune System , Prenatal Care
15.
Front Immunol ; 12: 725989, 2021.
Article in English | MEDLINE | ID: mdl-34566984

ABSTRACT

Approximately 1 in 4 pregnant women in the United States undergo labor induction. The onset and establishment of labor, particularly induced labor, is a complex and dynamic process influenced by multiple endocrine, inflammatory, and mechanical factors as well as obstetric and pharmacological interventions. The duration from labor induction to the onset of active labor remains unpredictable. Moreover, prolonged labor is associated with severe complications for the mother and her offspring, most importantly chorioamnionitis, uterine atony, and postpartum hemorrhage. While maternal immune system adaptations that are critical for the maintenance of a healthy pregnancy have been previously characterized, the role of the immune system during the establishment of labor is poorly understood. Understanding maternal immune adaptations during labor initiation can have important ramifications for predicting successful labor induction and labor complications in both induced and spontaneous types of labor. The aim of this study was to characterize labor-associated maternal immune system dynamics from labor induction to the start of active labor. Serial blood samples from fifteen participants were collected immediately prior to labor induction (baseline) and during the latent phase until the start of active labor. Using high-dimensional mass cytometry, a total of 1,059 single-cell immune features were extracted from each sample. A multivariate machine-learning method was employed to characterize the dynamic changes of the maternal immune system after labor induction until the establishment of active labor. A cross-validated linear sparse regression model (least absolute shrinkage and selection operator, LASSO) predicted the minutes since induction of labor with high accuracy (R = 0.86, p = 6.7e-15, RMSE = 277 min). Immune features most informative for the model included STAT5 signaling in central memory CD8+ T cells and pro-inflammatory STAT3 signaling responses across multiple adaptive and innate immune cell subsets. Our study reports a peripheral immune signature of labor induction, and provides important insights into biological mechanisms that may ultimately predict labor induction success as well as complications, thereby facilitating clinical decision-making to improve maternal and fetal well-being.


Subject(s)
Adaptation, Physiological/immunology , Labor, Induced , Labor, Obstetric/immunology , Adult , CD8-Positive T-Lymphocytes/immunology , Female , Humans , Immunoassay , Linear Models , Machine Learning , Pregnancy , STAT Transcription Factors/immunology , Signal Transduction/immunology , United States
16.
Front Immunol ; 12: 714090, 2021.
Article in English | MEDLINE | ID: mdl-34497610

ABSTRACT

Although most causes of death and morbidity in premature infants are related to immune maladaptation, the premature immune system remains poorly understood. We provide a comprehensive single-cell depiction of the neonatal immune system at birth across the spectrum of viable gestational age (GA), ranging from 25 weeks to term. A mass cytometry immunoassay interrogated all major immune cell subsets, including signaling activity and responsiveness to stimulation. An elastic net model described the relationship between GA and immunome (R=0.85, p=8.75e-14), and unsupervised clustering highlighted previously unrecognized GA-dependent immune dynamics, including decreasing basal MAP-kinase/NFκB signaling in antigen presenting cells; increasing responsiveness of cytotoxic lymphocytes to interferon-α; and decreasing frequency of regulatory and invariant T cells, including NKT-like cells and CD8+CD161+ T cells. Knowledge gained from the analysis of the neonatal immune landscape across GA provides a mechanistic framework to understand the unique susceptibility of preterm infants to both hyper-inflammatory diseases and infections.


Subject(s)
Biomarkers , Embryonic Development/immunology , Immune System Phenomena , Single-Cell Analysis , Antigen-Presenting Cells/immunology , Antigen-Presenting Cells/metabolism , Cell Communication , Disease Susceptibility/immunology , Gene Expression Regulation , Gestational Age , Humans , Immunomodulation , Infant, Newborn , Premature Birth , Signal Transduction , Single-Cell Analysis/methods , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
17.
Sci Transl Med ; 13(592)2021 05 05.
Article in English | MEDLINE | ID: mdl-33952678

ABSTRACT

Estimating the time of delivery is of high clinical importance because pre- and postterm deviations are associated with complications for the mother and her offspring. However, current estimations are inaccurate. As pregnancy progresses toward labor, major transitions occur in fetomaternal immune, metabolic, and endocrine systems that culminate in birth. The comprehensive characterization of maternal biology that precedes labor is key to understanding these physiological transitions and identifying predictive biomarkers of delivery. Here, a longitudinal study was conducted in 63 women who went into labor spontaneously. More than 7000 plasma analytes and peripheral immune cell responses were analyzed using untargeted mass spectrometry, aptamer-based proteomic technology, and single-cell mass cytometry in serial blood samples collected during the last 100 days of pregnancy. The high-dimensional dataset was integrated into a multiomic model that predicted the time to spontaneous labor [R = 0.85, 95% confidence interval (CI) [0.79 to 0.89], P = 1.2 × 10-40, N = 53, training set; R = 0.81, 95% CI [0.61 to 0.91], P = 3.9 × 10-7, N = 10, independent test set]. Coordinated alterations in maternal metabolome, proteome, and immunome marked a molecular shift from pregnancy maintenance to prelabor biology 2 to 4 weeks before delivery. A surge in steroid hormone metabolites and interleukin-1 receptor type 4 that preceded labor coincided with a switch from immune activation to regulation of inflammatory responses. Our study lays the groundwork for developing blood-based methods for predicting the day of labor, anchored in mechanisms shared in preterm and term pregnancies.


Subject(s)
Labor Onset , Metabolome , Proteome , Biomarkers , Female , Humans , Labor Onset/immunology , Labor Onset/metabolism , Longitudinal Studies , Pregnancy
18.
bioRxiv ; 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33594362

ABSTRACT

The biological determinants of the wide spectrum of COVID-19 clinical manifestations are not fully understood. Here, over 1400 plasma proteins and 2600 single-cell immune features comprising cell phenotype, basal signaling activity, and signaling responses to inflammatory ligands were assessed in peripheral blood from patients with mild, moderate, and severe COVID-19, at the time of diagnosis. Using an integrated computational approach to analyze the combined plasma and single-cell proteomic data, we identified and independently validated a multivariate model classifying COVID-19 severity (multi-class AUCtraining = 0.799, p-value = 4.2e-6; multi-class AUCvalidation = 0.773, p-value = 7.7e-6). Features of this high-dimensional model recapitulated recent COVID-19 related observations of immune perturbations, and revealed novel biological signatures of severity, including the mobilization of elements of the renin-angiotensin system and primary hemostasis, as well as dysregulation of JAK/STAT, MAPK/mTOR, and NF-κB immune signaling networks. These results provide a set of early determinants of COVID-19 severity that may point to therapeutic targets for the prevention of COVID-19 progression.

19.
JAMA Netw Open ; 3(12): e2029655, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33337494

ABSTRACT

Importance: Worldwide, preterm birth (PTB) is the single largest cause of deaths in the perinatal and neonatal period and is associated with increased morbidity in young children. The cause of PTB is multifactorial, and the development of generalizable biological models may enable early detection and guide therapeutic studies. Objective: To investigate the ability of transcriptomics and proteomics profiling of plasma and metabolomics analysis of urine to identify early biological measurements associated with PTB. Design, Setting, and Participants: This diagnostic/prognostic study analyzed plasma and urine samples collected from May 2014 to June 2017 from pregnant women in 5 biorepository cohorts in low- and middle-income countries (LMICs; ie, Matlab, Bangladesh; Lusaka, Zambia; Sylhet, Bangladesh; Karachi, Pakistan; and Pemba, Tanzania). These cohorts were established to study maternal and fetal outcomes and were supported by the Alliance for Maternal and Newborn Health Improvement and the Global Alliance to Prevent Prematurity and Stillbirth biorepositories. Data were analyzed from December 2018 to July 2019. Exposures: Blood and urine specimens that were collected early during pregnancy (median sampling time of 13.6 weeks of gestation, according to ultrasonography) were processed, stored, and shipped to the laboratories under uniform protocols. Plasma samples were assayed for targeted measurement of proteins and untargeted cell-free ribonucleic acid profiling; urine samples were assayed for metabolites. Main Outcomes and Measures: The PTB phenotype was defined as the delivery of a live infant before completing 37 weeks of gestation. Results: Of the 81 pregnant women included in this study, 39 had PTBs (48.1%) and 42 had term pregnancies (51.9%) (mean [SD] age of 24.8 [5.3] years). Univariate analysis demonstrated functional biological differences across the 5 cohorts. A cohort-adjusted machine learning algorithm was applied to each biological data set, and then a higher-level machine learning modeling combined the results into a final integrative model. The integrated model was more accurate, with an area under the receiver operating characteristic curve (AUROC) of 0.83 (95% CI, 0.72-0.91) compared with the models derived for each independent biological modality (transcriptomics AUROC, 0.73 [95% CI, 0.61-0.83]; metabolomics AUROC, 0.59 [95% CI, 0.47-0.72]; and proteomics AUROC, 0.75 [95% CI, 0.64-0.85]). Primary features associated with PTB included an inflammatory module as well as a metabolomic module measured in urine associated with the glutamine and glutamate metabolism and valine, leucine, and isoleucine biosynthesis pathways. Conclusions and Relevance: This study found that, in LMICs and high PTB settings, major biological adaptations during term pregnancy follow a generalizable model and the predictive accuracy for PTB was augmented by combining various omics data sets, suggesting that PTB is a condition that manifests within multiple biological systems. These data sets, with machine learning partnerships, may be a key step in developing valuable predictive tests and intervention candidates for preventing PTB.


Subject(s)
Gene Expression Profiling/methods , Metabolomics/methods , Perinatal Care , Pregnancy , Premature Birth , Quality Improvement/organization & administration , Adult , Causality , Clinical Decision Rules , Developing Countries , Early Diagnosis , Female , Gestational Age , Humans , Infant, Newborn , Machine Learning , Perinatal Care/methods , Perinatal Care/standards , Perinatal Mortality , Pregnancy/blood , Pregnancy/urine , Pregnancy Outcome/epidemiology , Premature Birth/diagnosis , Premature Birth/epidemiology , Premature Birth/prevention & control
20.
Nat Mach Intell ; 2(10): 619-628, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33294774

ABSTRACT

The dense network of interconnected cellular signalling responses that are quantifiable in peripheral immune cells provides a wealth of actionable immunological insights. Although high-throughput single-cell profiling techniques, including polychromatic flow and mass cytometry, have matured to a point that enables detailed immune profiling of patients in numerous clinical settings, the limited cohort size and high dimensionality of data increase the possibility of false-positive discoveries and model overfitting. We introduce a generalizable machine learning platform, the immunological Elastic-Net (iEN), which incorporates immunological knowledge directly into the predictive models. Importantly, the algorithm maintains the exploratory nature of the high-dimensional dataset, allowing for the inclusion of immune features with strong predictive capabilities even if not consistent with prior knowledge. In three independent studies our method demonstrates improved predictions for clinically relevant outcomes from mass cytometry data generated from whole blood, as well as a large simulated dataset. The iEN is available under an open-source licence.

SELECTION OF CITATIONS
SEARCH DETAIL
...