Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 50(19): 10406-10412, 2016 10 04.
Article in English | MEDLINE | ID: mdl-27631570

ABSTRACT

Nitroaromatic compounds are groundwater pollutants that can be degraded through reactions with Fe(II) adsorbed on iron oxide nanoparticles, although little is known about the evolving reactivity of the minerals with continuous pollutant exposure. In this work, Fe(II)/goethite reactivity toward 4-chloronitrobenzene (4-ClNB) as a function of pH, organic matter presence, and reactant concentrations was explored using sequential-spike batch reactors. Reaction rate constants were smaller with lower pH, introduction of organic matter, and diluted reactant concentrations as compared to a reference condition. Reaction rate constants did not change with the number of 4-ClNB spikes for all reaction conditions. Under all conditions, oxidative goethite growth was demonstrated through X-ray diffraction, magnetic characterization, and transmission electron microscopy. Nonparametric statistics were applied to compare histograms of lengths and widths of goethite nanoparticles as a function of varied solution conditions. The conditions that slowed the reaction also resulted in statistically shorter and wider particles than for the faster reactions. Additionally, added organic matter interfered with particle growth on the favorable {021} faces to a greater extent, with statistically reduced rate of growth on the tip facets and increased rate of growth on the side facets. These data demonstrate that oxidative growth of goethite in aqueous systems is dependent on major groundwater variables, such as pH and the presence of organic matter, which could lead to the evolving reactivity of goethite particles in natural environments.


Subject(s)
Iron Compounds/chemistry , Iron/chemistry , Hydrogen-Ion Concentration , Minerals/chemistry , Oxidation-Reduction , Water/chemistry , X-Ray Diffraction
2.
Environ Sci Technol ; 50(3): 1200-8, 2016 Feb 02.
Article in English | MEDLINE | ID: mdl-26790005

ABSTRACT

Natural organic matter (NOM) is ubiquitous in surface water and groundwater and interacts strongly with mineral surfaces. The details of these interactions, as well as their impacts on mineral surface reactivity, are not well understood. In this work, both the reactivity and aggregation of goethite (α-FeOOH) nanoparticles were quantified in the presence of well-characterized humic substances. Results from monitoring the kinetics of reductive degradation of 4-chloronitrobenzene (4-ClNB) by Fe(II) adsorbed onto the goethite nanoparticles with and without added humic substances demonstrates that, in all cases, humic substances suppressed Fe(II)-goethite reactivity. The ranking of the standards from the least to most inhibitive was Pahokee Peat humic acid, Elliot Soil humic acid, Suwannee River humic acid, Suwannee River NOM, Suwannee River fulvic acid I, Suwannee River fulvic acid II, and Pahokee Peat fulvic acid. Correlations between eight characteristics (molecular weight, carboxyl concentration, and carbon, oxygen, nitrogen, aliphatic, heteroaliphatic, and aromatic content) and 4-ClNB degradation rate constants were observed. Faster kinetic rates of reductive degradation were observed with increased molecular weight and nitrogen, carbon, and aromatic content, and slower rates were observed with increased carboxyl concentration and oxygen, heteroaliphatic, and aliphatic content. With these correlations, improved predictions of the reactivity of Fe(II)-goethite with pollutants based on properties of the humic substances are possible.


Subject(s)
Humic Substances , Iron Compounds/chemistry , Minerals/chemistry , Nanoparticles/chemistry , Water Pollutants, Chemical/chemistry , Adsorption , Benzopyrans/chemistry , Biodegradation, Environmental , Carbon/analysis , Humic Substances/analysis , Iron/chemistry , Kinetics , Molecular Weight , Nitrobenzenes/chemistry , Nitrogen/analysis , Oxygen/analysis , Principal Component Analysis , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...