Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
2.
Hist Philos Life Sci ; 44(4): 47, 2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36258007

ABSTRACT

The current strategy of searching for an effective treatment for COVID-19 relies mainly on repurposing existing therapies developed to target other diseases. Conflicting results have emerged in regard to the efficacy of several tested compounds but later results were negative. The number of conducted and ongoing trials and the urgent need for a treatment pose the risk that false-positive results will be incorrectly interpreted as evidence for treatments' efficacy and a ground for drug approval. Our purpose is twofold. First, we show that the number of drug-repurposing trials can explain the false-positive results. Second, we assess the evidence for treatments' efficacy from the perspective of evidential pluralism and argue that considering mechanistic evidence is particularly needed in cases when the evidence from clinical trials is conflicting or of low quality. Our analysis is an application of the program of Evidence Based Medicine Plus (EBM+) to the drug repurposing trials for COVID. Our study shows that if decision-makers applied EBM+, authorizing the use of ineffective treatments would be less likely. We analyze the example of trials assessing the efficacy of hydroxychloroquine as a treatment for COVID-19 and mechanistic evidence in favor of and against its therapeutic power to draw a lesson for decision-makers and drug agencies on how excessive hypothesis testing can lead to spurious findings and how studying negative mechanistic evidence can be helpful in discriminating genuine from spurious results.


Subject(s)
COVID-19 Drug Treatment , Humans , Drug Repositioning , Hydroxychloroquine/therapeutic use , SARS-CoV-2 , Research Design
3.
Front Microbiol ; 13: 911577, 2022.
Article in English | MEDLINE | ID: mdl-35992708

ABSTRACT

Developing precise definitions and fine categories is an important part of the scientific endeavour, enabling fidelity of transfers of knowledge and the progress of science. Currently, as a result of research on symbiotic microorganisms, science has been flooded with discoveries which appear to undermine many commonly accepted concepts and to introduce new ones that often require updated conceptualisations. One question currently being debated concerns whether or not a holobiont can be considered an organism. Based on which concept, physiology or evolutionary, of the organism is chosen, the verdict differs. We attempt here to show how a change in perspective, from that of substance ontology into that of process ontology, is capable of reconciling opposing positions within the existing discussion and enabling the implementation of conceptual pluralism.

4.
Theor Med Bioeth ; 43(2-3): 127-154, 2022 06.
Article in English | MEDLINE | ID: mdl-35859085

ABSTRACT

According to the mainstream position in the bioethical definition of death debate, death is to be equated with the cessation of an organism. Given such a perspective, some bioethicists uphold the position that brain-dead patients are dead, while others claim that they are alive. Regardless of the specific opinion on the status of brain-dead patients, the mere bioethical concept of death, according to many bioethicists, has the merit of being unanimous and univocal, as well as grounded in biology. In the present article, we challenge such a thesis. We provide evidence that theoretical biology operates with a plurality of equally valid organismic concepts, which imply different conclusions regarding the organismal status of a brain-dead patient. Moreover, the theoretical biology concepts of an organism are very distant from the view on an organism that appears by way of bioethicists theorizing on death. We conclude that if death is to be understood as the cessation of an organism, there is no single correct answer to the question of whether a brain-dead patient is alive or dead.


Subject(s)
Brain Death , Humans
5.
Bioessays ; 43(1): e2000148, 2021 01.
Article in English | MEDLINE | ID: mdl-33165975

ABSTRACT

The aim of the present paper is to explore whether seasonal outbreaks of infectious diseases may be linked to changes in host microbiomes. This is a very important issue, because one way to have more control over seasonal outbreaks is to understand the factors that underlie them. In this paper, I will evaluate the relevance of the microbiome as one of such factors. The paper is based on two pillars of reasoning. Firstly, on the idea that microbiomes play an important role in their hosts' defence against infectious diseases. Secondly, on the idea that microbiomes are not stable, but change seasonally. These two ideas are combined in order to argue that seasonal changes in a given microbiome may influence the functionality of the host's immune system and consequently make it easier for infectious agents to infect the host at certain times of year. I will argue that, while this is only a theoretical possibility, certain studies may back up such claims. Furthermore, I will show that this does not necessarily contradict other hypotheses aimed at explaining seasonal outbreaks; in fact, it may even enhance them.


Subject(s)
Microbiota , Disease Outbreaks , Humans , Seasons
6.
Microbiome ; 8(1): 117, 2020 08 14.
Article in English | MEDLINE | ID: mdl-32795355

ABSTRACT

How does microbiota research impact our understanding of biological individuality? We summarize the interdisciplinary summer school on "Microbiota, symbiosis and individuality: conceptual and philosophical issues" (July 2019), which was supported by a European Research Council starting grant project "Immunity, DEvelopment, and the Microbiota" (IDEM). The summer school centered around interdisciplinary group work on four facets of microbiota research: holobionts, individuality, causation, and human health. The conceptual discussion of cutting-edge empirical research provided new insights into microbiota and highlights the value of incorporating into meetings experts from other disciplines, such as philosophy and history of science. Video Abstract.


Subject(s)
Biomedical Research , Individuality , Interdisciplinary Studies , Microbiota , Schools , Symbiosis , Europe , Health , Humans , Seasons
7.
Biol Rev Camb Philos Soc ; 95(5): 1308-1324, 2020 10.
Article in English | MEDLINE | ID: mdl-32406121

ABSTRACT

Given one conception of biological individuality (evolutionary, physiological, etc.), can a holobiont - that is the host + its symbiotic (mutualistic, commensalist and parasitic) microbiome - be simultaneously a biological individual and an ecological community? Herein, we support this possibility by arguing that the notion of biological individuality is part-dependent. In our account, the individuality of a biological ensemble should not only be determined by the conception of biological individuality in use, but also by the biological characteristics of the part of the ensemble under investigation. In the specific case of holobionts, evaluations of their individuality should be made either host-relative or microbe-relative. We support the claim that biological individuality is part-dependent by drawing upon recent empirical evidence regarding the physiology of hosts and microbes, and the recent characterization of the 'demibiont'. Our account shows that contemporary disagreements about the individuality of the holobiont derive from an incorrect understanding of the ontology of biological individuality. We show that collaboration between philosophers and biologists can be very fruitful in attempts to solve some contemporary biological debates.


Subject(s)
Microbiota , Biological Evolution , Humans , Symbiosis
8.
Theory Biosci ; 137(2): 207-208, 2018 11.
Article in English | MEDLINE | ID: mdl-30238406

ABSTRACT

The original version of this article unfortunately contained a mistake.

9.
Theory Biosci ; 137(2): 197-206, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30066215

ABSTRACT

Research on symbiotic communities (microbiomes) of multicellular organisms seems to be changing our understanding of how species of plants and animals have evolved over millions of years. The quintessence of these discoveries is the emergence of the hologenome theory of evolution, founded on the concept that a holobiont (a host along with all of its associated symbiotic microorganisms) acts a single unit of selection in the process of evolution. Although the hologenome theory has become very popular among certain scientific circles, its principles are still being debated. In this paper, we argue, firstly, that only a very small number of symbiotic microorganisms are sufficiently integrated into multicellular organisms to act in concert with them as units of selection, thus rendering claims that holobionts are units of selection invalid. Secondly, even though holobionts are not units of selection, they can still constitute genuine units from an evolutionary perspective, provided we accept certain constraints: mainly, they should be considered units of co-operation. Thirdly, we propose a reconciliation of the role of symbiotic microorganisms with the theory of speciation through the use of a developed framework. Mainly, we will argue that, in order to understand the role of microorganisms in the speciation of multicellular organisms, it is not necessary to consider holobionts units of selection; it is sufficient to consider them units of co-operation.


Subject(s)
Adaptation, Biological , Genetic Speciation , Symbiosis , Adaptation, Physiological/genetics , Animals , Host-Parasite Interactions/genetics , Microbiota , Philosophy , Plants , Species Specificity
10.
Biol Philos ; 31(5): 619-637, 2016.
Article in English | MEDLINE | ID: mdl-27642204

ABSTRACT

If there is a single discipline of science calling the basic concepts of biology into question, it is without doubt microbiology. Indeed, developments in microbiology have recently forced us to rethink such fundamental concepts as the organism, individual, and genome. In this paper I show how microorganisms are changing our understanding of natural aggregations and develop the concept of a Darwinian population to embrace these discoveries. I start by showing that it is hard to set the boundaries of a Darwinian population, and I suggest thinking of a Darwinian population as a relative property of a Darwinian individual. Then I argue, in contrast to the commonly held view, that Darwinian populations are multispecies units, and that in order to accept the multispecies account of Darwinian populations we have to separate fitness from natural selection. Finally, I show how all these ideas provide a theoretical framework leading to a more precise understanding of the ecology of endosymbiosis than is afforded by poetic metaphors such as 'slavery'.

SELECTION OF CITATIONS
SEARCH DETAIL
...