Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 172
Filter
1.
Metabolites ; 14(6)2024 May 27.
Article in English | MEDLINE | ID: mdl-38921438

ABSTRACT

Microscopic colitis (MC) is classified as collagenous colitis (CC) and lymphocytic colitis (LC). Genetic associations between CC and human leucocyte antigens (HLAs) have been found, with smoking being a predisposing external factor. Smoking has a great impact on metabolomics. The aim of this explorative study was to analyze global metabolomics in MC and to examine whether the metabolomic profile differed regarding the type and course of MC, the presence of IBS-like symptoms, treatment, and smoking habits. Of the 240 identified women with MC aged ≤73 years, 131 completed the study questionnaire; the Rome III questionnaire; and the Visual Analog Scale for Irritable Bowel Syndrome (VAS-IBS). Blood samples were analyzed by ultra-high-performance liquid chromatograph mass spectrometry (UHLC-MS/UHPLC-MSMS). The women, 63.1 (58.7-67.2) years old, were categorized based on CC (n = 76) and LC (n = 55); one episode or refractory MC; IBS-like symptoms or not; use of corticosteroids or not; and smoking habits. The only metabolomic differences found in the univariate model after adjustment for false discovery rate (FDR) were between smokers and non-smokers. Serotonin was markedly increased in smokers (p < 0.001). No clear patterns appeared when conducting a principal component analysis (PCA). No differences in the metabolomic profile were found depending on the type or clinical course of the disease, neither in the whole MC group nor in the subgroup analysis of CC.

2.
Nat Commun ; 14(1): 8040, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38086799

ABSTRACT

Epigenetic dysregulation may influence disease progression. Here we explore whether epigenetic alterations in human pancreatic islets impact insulin secretion and type 2 diabetes (T2D). In islets, 5,584 DNA methylation sites exhibit alterations in T2D cases versus controls and are associated with HbA1c in individuals not diagnosed with T2D. T2D-associated methylation changes are found in enhancers and regions bound by ß-cell-specific transcription factors and associated with reduced expression of e.g. CABLES1, FOXP1, GABRA2, GLR1A, RHOT1, and TBC1D4. We find RHOT1 (MIRO1) to be a key regulator of insulin secretion in human islets. Rhot1-deficiency in ß-cells leads to reduced insulin secretion, ATP/ADP ratio, mitochondrial mass, Ca2+, and respiration. Regulators of mitochondrial dynamics and metabolites, including L-proline, glycine, GABA, and carnitines, are altered in Rhot1-deficient ß-cells. Islets from diabetic GK rats present Rhot1-deficiency. Finally, RHOT1methylation in blood is associated with future T2D. Together, individuals with T2D exhibit epigenetic alterations linked to mitochondrial dysfunction in pancreatic islets.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin-Secreting Cells , Islets of Langerhans , Humans , Rats , Animals , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Insulin Secretion , Insulin/metabolism , DNA Methylation , Islets of Langerhans/metabolism , Insulin-Secreting Cells/metabolism , Transcription Factors/metabolism , Epigenesis, Genetic , Mitochondria/genetics , Mitochondria/metabolism , Repressor Proteins/metabolism , Forkhead Transcription Factors/metabolism
3.
Virulence ; 14(1): 2249790, 2023 12.
Article in English | MEDLINE | ID: mdl-37621095

ABSTRACT

Translocon pores formed in the eukaryotic cell membrane by a type III secretion system facilitate the translocation of immune-modulatory effector proteins into the host cell interior. The YopB and YopD proteins produced and secreted by pathogenic Yersinia spp. harboring a virulence plasmid-encoded type III secretion system perform this pore-forming translocator function. We had previously characterized in vitro T3SS function and in vivo pathogenicity of a number of strains encoding sited-directed point mutations in yopD. This resulted in the classification of mutants into three different classes based upon the severity of the phenotypic defects. To investigate the molecular and functional basis for these defects, we explored the effectiveness of RAW 264.7 cell line to respond to infection by representative YopD mutants of all three classes. Signature cytokine profiles could separate the different YopD mutants into distinct categories. The activation and suppression of certain cytokines that function as central innate immune response modulators correlated well with the ability of mutant bacteria to alter anti-phagocytosis and programmed cell death pathways. These analyses demonstrated that sub-optimal translocon pores impact the extent and magnitude of host cell responsiveness, and this limits the capacity of pathogenic Yersinia spp. to fortify against attack by both early and late arms of the host innate immune response.


Subject(s)
Yersinia pseudotuberculosis , Animals , Yersinia pseudotuberculosis/genetics , Type III Secretion Systems/genetics , Immunity, Innate , Macrophages , Yersinia
4.
Nutrients ; 15(14)2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37513690

ABSTRACT

Dietary interventions modify gut microbiota and clinical outcomes. Weight reduction and improved glucose and lipid homeostasis were observed after adopting an Okinawan-based Nordic diet (O-BN) in individuals with type 2 diabetes. The aim of the present study was to explore changes in metabolomics and gut microbiota during O-BN and correlate changes with clinical outcomes. A total of 30 patients (17 women), aged 57.5 ± 8.2 years, diabetes duration 10.4 ± 7.6 years, 90% over-weight, were included. Participants were provided an O-BN for 12 weeks. Before and after intervention, and 16 weeks afterwards, anthropometry and clinical data were estimated and questionnaires were collected, as well as samples of blood and stool. Plasma metabolomics were determined by gas- (GC-MS) or liquid- (LC-MS) chromatography-based mass spectrometry and fecal microbiota determination was based on 16S rRNA amplicons from regions V1-V2. During the intervention, weight (6.8%), waist circumference (6.1%), and levels of glucose, HbA1c, insulin, triglycerides, and cholesterol were decreased. Of 602 metabolites, 323 were changed for any or both periods; 199 (101 lipids) metabolites were decreased while 58 (43 lipids) metabolites were increased during the intervention. Changes in glucose homeostasis were linked to changes in, e.g., 1,5-anhydroglucitol, thyroxine, and chiro-inositol. Changes of microbe beta diversity correlated positively with food components and negatively with IL-18 (p = 0.045). Abundance differences at phylum and genus levels were found. Abundances of Actinobacteria, Bacteroidetes, Firmicutes, and Verrucomicrobia correlated with anthropometry, HbA1c, lipids, inflammation, and food. Changes in metabolites and microbiota were reversed after the intervention. The O-BN-induced changes in metabolomics and gut microbiota correspond to clinical outcomes of reduced weight and inflammation and improved glucose and lipid metabolism.


Subject(s)
Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Humans , Female , Glucose/pharmacology , Diabetes Mellitus, Type 2/microbiology , Lipid Metabolism , RNA, Ribosomal, 16S , Glycated Hemoglobin , Diet , Inflammation , Lipids/pharmacology
5.
J Clin Med ; 11(21)2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36362763

ABSTRACT

BACKGROUND: The increased comorbidity and mortality in rheumatoid arthritis (RA) patients are largely due to cardiovascular disease (CVD). Previously, we demonstrated increased frequencies of risk factors for CVD (elevated body mass index (BMI), elevated apoliprotein (Apo) B:ApoA1 ratio, and smoking) in pre-RA individuals compared with matched controls. OBJECTIVES: Assess the impact of traditional CV risk factors present before the onset of RA on the risk of CV events (CVE) after diagnosis in comparison with matched controls. METHODS: A case-control study including 521 pre-symptomatic individuals and 1566 controls identified within the Health Surveys of the Medical Biobank was performed. CVD risk factors were hypertension, elevated ApoB:A1 ratio, BMI, diabetes, and smoking. Information on comorbidities was requested from the Swedish National Patient Register and Cause of Death Register. RESULTS: Pre-RA individuals had a higher risk of future CVE compared with matched controls (HR [95% CI] 1.70 [1.31-2.21]), which remained after adjustments for risk factors for CVD (HR [95% CI] 1.73 [1.27-2.35]). Most risk factors were associated with CVE after diagnosis, and a combination resulted in a higher risk in RA compared with controls; two risk factors, HR [95% CI] 2.70 [1.19-6.13] vs. 1.26 [0.75-2.13]; and three to four risk factors, HR [95% CI] 6.32 [2.92-13.68] vs. 3.77 [2.34-6.00]. CONCLUSIONS: Risk factors for CVD present in pre-RA individuals were associated with future CVE, and even after adjustments for these risk factors and treatments after RA onset, pre-RA individuals had a higher risk of CVE compared with controls. These findings further highlight the importance of the early assessment of risk for CVD.

6.
Front Plant Sci ; 13: 897186, 2022.
Article in English | MEDLINE | ID: mdl-35991442

ABSTRACT

Plants interact with a multitude of microorganisms and insects, both below- and above ground, which might influence plant metabolism. Despite this, we lack knowledge of the impact of natural soil communities and multiple aboveground attackers on the metabolic responses of plants, and whether plant metabolic responses to single attack can predict responses to dual attack. We used untargeted metabolic fingerprinting (gas chromatography-mass spectrometry, GC-MS) on leaves of the pedunculate oak, Quercus robur, to assess the metabolic response to different soil microbiomes and aboveground single and dual attack by oak powdery mildew (Erysiphe alphitoides) and the common oak aphid (Tuberculatus annulatus). Distinct soil microbiomes were not associated with differences in the metabolic profile of oak seedling leaves. Single attacks by aphids or mildew had pronounced but different effects on the oak leaf metabolome, but we detected no difference between the metabolomes of healthy seedlings and seedlings attacked by both aphids and powdery mildew. Our findings show that aboveground attackers can have species-specific and non-additive effects on the leaf metabolome of oak. The lack of a metabolic signature detected by GC-MS upon dual attack might suggest the existence of a potential negative feedback, and highlights the importance of considering the impacts of multiple attackers to gain mechanistic insights into the ecology and evolution of species interactions and the structure of plant-associated communities, as well as for the development of sustainable strategies to control agricultural pests and diseases and plant breeding.

7.
Plant Physiol ; 189(4): 1943-1960, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35604104

ABSTRACT

Leaf senescence can be induced by stress or aging, sometimes in a synergistic manner. It is generally acknowledged that the ability to withstand senescence-inducing conditions can provide plants with stress resilience. Although the signaling and transcriptional networks responsible for a delayed senescence phenotype, often referred to as a functional stay-green trait, have been actively investigated, very little is known about the subsequent metabolic adjustments conferring this aptitude to survival. First, using the individually darkened leaf (IDL) experimental setup, we compared IDLs of wild-type (WT) Arabidopsis (Arabidopsis thaliana) to several stay-green contexts, that is IDLs of two functional stay-green mutant lines, oresara1-2 (ore1-2) and an allele of phytochrome-interacting factor 5 (pif5), as well as to leaves from a WT plant entirely darkened (DP). We provide compelling evidence that arginine and ornithine, which accumulate in all stay-green contexts-likely due to the lack of induction of amino acids (AAs) transport-can delay the progression of senescence by fueling the Krebs cycle or the production of polyamines (PAs). Secondly, we show that the conversion of putrescine to spermidine (SPD) is controlled in an age-dependent manner. Thirdly, we demonstrate that SPD represses senescence via interference with ethylene signaling by stabilizing the ETHYLENE BINDING FACTOR1 and 2 (EBF1/2) complex. Taken together, our results identify arginine and ornithine as central metabolites influencing the stress- and age-dependent progression of leaf senescence. We propose that the regulatory loop between the pace of the AA export and the progression of leaf senescence provides the plant with a mechanism to fine-tune the induction of cell death in leaves, which, if triggered unnecessarily, can impede nutrient remobilization and thus plant growth and survival.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Arginine/metabolism , Ethylenes/metabolism , Gene Expression Regulation, Plant , Ornithine/genetics , Ornithine/metabolism , Plant Leaves/metabolism , Plant Senescence , Transcription Factors/metabolism
8.
EMBO J ; 41(10): e109390, 2022 05 16.
Article in English | MEDLINE | ID: mdl-35411952

ABSTRACT

Mitophagy removes defective mitochondria via lysosomal elimination. Increased mitophagy coincides with metabolic reprogramming, yet it remains unknown whether mitophagy is a cause or consequence of such state changes. The signalling pathways that integrate with mitophagy to sustain cell and tissue integrity also remain poorly defined. We performed temporal metabolomics on mammalian cells treated with deferiprone, a therapeutic iron chelator that stimulates PINK1/PARKIN-independent mitophagy. Iron depletion profoundly rewired the metabolome, hallmarked by remodelling of lipid metabolism within minutes of treatment. DGAT1-dependent lipid droplet biosynthesis occurred several hours before mitochondrial clearance, with lipid droplets bordering mitochondria upon iron chelation. We demonstrate that DGAT1 inhibition restricts mitophagy in vitro, with impaired lysosomal homeostasis and cell viability. Importantly, genetic depletion of DGAT1 in vivo significantly impaired neuronal mitophagy and locomotor function in Drosophila. Our data define iron depletion as a potent signal that rapidly reshapes metabolism and establishes an unexpected synergy between lipid homeostasis and mitophagy that safeguards cell and tissue integrity.


Subject(s)
Iron , Mitophagy , Animals , Iron/metabolism , Lysosomes/metabolism , Mammals , Mitochondria/metabolism , Protein Kinases/metabolism , Ubiquitin-Protein Ligases/metabolism
9.
Cell Syst ; 13(3): 241-255.e7, 2022 03 16.
Article in English | MEDLINE | ID: mdl-34856119

ABSTRACT

We explored opportunities for personalized and predictive health care by collecting serial clinical measurements, health surveys, genomics, proteomics, autoantibodies, metabolomics, and gut microbiome data from 96 individuals who participated in a data-driven health coaching program over a 16-month period with continuous digital monitoring of activity and sleep. We generated a resource of >20,000 biological samples from this study and a compendium of >53 million primary data points for 558,032 distinct features. Multiomics factor analysis revealed distinct and independent molecular factors linked to obesity, diabetes, liver function, cardiovascular disease, inflammation, immunity, exercise, diet, and hormonal effects. For example, ethinyl estradiol, a common oral contraceptive, produced characteristic molecular and physiological effects, including increased levels of inflammation and impact on thyroid, cortisol levels, and pulse, that were distinct from other sources of variability observed in our study. In total, this work illustrates the value of combining deep molecular and digital monitoring of human health. A record of this paper's transparent peer review process is included in the supplemental information.


Subject(s)
Gastrointestinal Microbiome , Genomics , Genomics/methods , Humans , Inflammation , Life Style , Proteomics
10.
Metabolites ; 11(7)2021 Jul 04.
Article in English | MEDLINE | ID: mdl-34357334

ABSTRACT

A 4-week dietary intervention with a starch- and sucrose-restricted diet (SSRD) was conducted in patients with irritable bowel syndrome (IBS) to examine the metabolic profile in relation to nutrient intake and gastrointestinal symptoms. IBS patients were randomized to SSRD intervention (n = 69) or control continuing with their ordinary food habits (n = 22). Food intake was registered and the questionnaires IBS-symptoms severity scale (IBS-SSS) and visual analog scale for IBS (VAS-IBS) were completed. Metabolomics untargeted analysis was performed by gas chromatography mass spectrometry (GC-MS) and liquid chromatography mass spectrometry (LC-MS) in positive and negative ionization modes. SSRD led to marked changes in circulating metabolite concentrations at the group level, most prominent for reduced starch intake and increased polyunsaturated fat, with small changes in the control group. On an individual level, the correlations were weak. The marked reduction in gastrointestinal symptoms did not correlate with the metabolic changes. SSRD was observed by clear metabolic effects mainly related to linoleic acid metabolism, fatty acid biosynthesis, and beta-oxidation.

11.
PLoS One ; 16(5): e0251293, 2021.
Article in English | MEDLINE | ID: mdl-33983993

ABSTRACT

BACKGROUND: Proteins and lipids of milk fat globule membrane (MFGM) and probiotics are immunomodulatory. We hypothesized that Lactobacillus paracasei ssp. paracasei strain F19 (F19) would augment vaccine antibody and T helper 1 type immune responses whereas MFGM would produce an immune response closer to that of breastfed (BF) infants. OBJECTIVE: To compare the effects of supplementing formula with F19 or bovine MFGM on serum cytokine and vaccine responses of formula-fed (FF) and BF infants. DESIGN: FF infants were randomized to formula with F19 (n = 195) or MFGM (n = 192), or standard formula (SF) (n = 194) from age 21±7 days until 4 months. A BF group served as reference (n = 208). We analyzed seven cytokines (n = 398) in serum at age 4 months using magnetic bead-based multiplex technology. Using ELISA, we analyzed anti-diphtheria IgG (n = 258) and anti-poliovirus IgG (n = 309) concentrations in serum before and after the second and third immunization, respectively. RESULTS: Compared with SF, the F19 group had greater IL-2 and lower IFN-γ concentrations (p<0.05, average effect size 0.14 and 0.39). Compared with BF, the F19 group had greater IL-2, IL-4 and IL-17A concentrations (p<0.05, average effect size 0.42, 0.34 and 0.26, respectively). The MFGM group had lower IL-2 and IL-17A concentrations compared with SF (p<0.05, average effect size 0.34 and 0.31). Cytokine concentrations were comparable among the MFGM and BF groups. Vaccine responses were comparable among the formula groups. CONCLUSIONS: Contrary to previous studies F19 increased IL-2 and lowered IFN-γ production, suggesting that the response to probiotics differs across populations. The cytokine profile of the MFGM group approached that of BF infants, and may be associated with the previous finding that infectious outcomes for the MFGM group in this cohort were closer to those of BF infants, as opposed to the SF group. These immunomodulatory effects support future clinical evaluation of infant formula with F19 or MFGM.


Subject(s)
Cytokines/drug effects , Infant Formula/chemistry , Probiotics/pharmacology , Breast Feeding/methods , China , Cytokines/analysis , Cytokines/blood , Female , Food, Formulated/adverse effects , Food, Formulated/analysis , Glycolipids/pharmacology , Glycoproteins/pharmacology , Humans , Infant , Infant, Newborn , Interferon-gamma/metabolism , Interleukin-2/metabolism , Lipid Droplets , Lipids/pharmacology , Male
12.
J Pharm Biomed Anal ; 197: 113971, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33639525

ABSTRACT

In this pilot study, we carried out metabolic profiling of patients with rheumatoid arthritis (RA) starting therapy with biological disease-modifying antirheumatic drugs (bDMARDs). The main aim of the study was to assess the occurring metabolic changes associated with therapy success and metabolic pathways involved. In particular, the potential of the metabolomics profiles was evaluated as therapeutically valuable prognostic indicators of the effectiveness of bDMARD treatment to identify responders versus non-responders prior to implementing treatment. Plasma metabolomic profiles of twenty-five patients with RA prior bDMARD treatment and after three months of therapy were obtained by 1H NMR, liquid chromatography - mass spectrometry, and gas chromatography - mass spectrometry and evaluated by statistical and multivariate analyses. In the group of responders, significant differences in their metabolic patterns were seen after three months of the bDMARD therapy compared with profiles prior to treatment. We identified 24 metabolites that differed significantly between these two-time points mainly belonging to amino acid metabolism, peptides, lipids, cofactors, and vitamins and xenobiotics. Eleven metabolites differentiated responders versus non-responders before treatment. Additionally, N-acetylglucosamine and N-acetylgalactosamine (GlycA) and N-acetylneuraminic acid (GlycB) persisted significant in comparison responders to non-responders after three months of therapy. Moreover, those two metabolites indicated prediction of response potential by results of receiver-operating characteristic (ROC) curve analysis. The applied analysis provides novel insights into the metabolic pathways involved in RA patient's response to bDMARD and therapy effectiveness. GlycA and GlycB are promising biomarkers to identify responding patients prior onset of bDMARD therapy.


Subject(s)
Acetylgalactosamine/blood , Arthritis, Rheumatoid/blood , Biomarkers/blood , Metabolomics , N-Acetylneuraminic Acid/blood , Adult , Antirheumatic Agents/therapeutic use , Arthritis, Rheumatoid/drug therapy , Chromatography, High Pressure Liquid , Female , Gas Chromatography-Mass Spectrometry , Humans , Magnetic Resonance Spectroscopy , Male , Middle Aged , Pilot Projects , Predictive Value of Tests , Prognosis , ROC Curve , Treatment Outcome
13.
Nat Commun ; 11(1): 4487, 2020 09 08.
Article in English | MEDLINE | ID: mdl-32900998

ABSTRACT

An important aspect of precision medicine is to probe the stability in molecular profiles among healthy individuals over time. Here, we sample a longitudinal wellness cohort with 100 healthy individuals and analyze blood molecular profiles including proteomics, transcriptomics, lipidomics, metabolomics, autoantibodies and immune cell profiling, complemented with gut microbiota composition and routine clinical chemistry. Overall, our results show high variation between individuals across different molecular readouts, while the intra-individual baseline variation is low. The analyses show that each individual has a unique and stable plasma protein profile throughout the study period and that many individuals also show distinct profiles with regards to the other omics datasets, with strong underlying connections between the blood proteome and the clinical chemistry parameters. In conclusion, the results support an individual-based definition of health and show that comprehensive omics profiling in a longitudinal manner is a path forward for precision medicine.


Subject(s)
Healthy Aging/metabolism , Metabolome , Proteome/metabolism , Aged , Cohort Studies , Female , Healthy Aging/genetics , Healthy Volunteers , Humans , Lipidomics , Longitudinal Studies , Male , Metabolomics , Middle Aged , Precision Medicine , Prospective Studies , Proteomics , Sweden , Transcriptome
14.
Anat Rec (Hoboken) ; 303(3): 506-515, 2020 03.
Article in English | MEDLINE | ID: mdl-31090209

ABSTRACT

The auditory apparatus of the inner ear does not show turnover of sensory hair cells (HCs) in adult mammals; in contrast, there are many observations supporting low-level turnover of vestibular HCs within the balance organs of mammalian inner ears. This low-level renewal of vestibular HCs exists during normal conditions and it is further enhanced after trauma-induced loss of these HCs. The main process for renewal of HCs within mammalian vestibular epithelia is a conversion/transdifferentiation of existing supporting cells (SCs) into replacement HCs.In earlier studies using long-term organ cultures of postnatal rat macula utriculi, HC loss induced by gentamicin resulted in an initial substantial decline in HC density followed by a significant increase in the proportion of HCs to SCs indicating the production of replacement HCs. In the present study, using the same model of ototoxic damage to study renewal of vestibular HCs, we focus on the ultrastructural characteristics of SCs undergoing transdifferentiation into new HCs. Our objective was to search for morphological signs of SC plasticity during this process. In the utricular epithelia, we observed immature HCs, which appear to be SCs transdifferentiating into HCs. These bridge SCs have unique morphological features characterized by formation of foot processes, basal accumulation of mitochondria, and an increased amount of connections with nearby SCs. No gap junctions were observed on these transitional cells. The tight junction seals were morphologically intact in both control and gentamicin-exposed explants. Anat Rec, 303:506-515, 2020. © 2019 The Authors. The Anatomical Record published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists.


Subject(s)
Cell Transdifferentiation/physiology , Gentamicins/toxicity , Hair Cells, Vestibular/ultrastructure , Saccule and Utricle/ultrastructure , Stem Cells/ultrastructure , Animals , Hair Cells, Vestibular/drug effects , Ototoxicity , Rats , Rats, Wistar , Saccule and Utricle/drug effects , Stem Cells/drug effects
15.
Metabolites ; 9(12)2019 Nov 27.
Article in English | MEDLINE | ID: mdl-31783598

ABSTRACT

The onset of ulcerative colitis (UC) is characterized by a dysregulated mucosal immune response triggered by several genetic and environmental factors in the context of host-microbe interaction. This complexity makes UC ideal for metabolomic studies to unravel the disease pathobiology and to improve the patient stratification strategies. This study aims to explore the mucosal metabolomic profile in UC patients, and to define the UC metabolic signature. Treatment- naïve UC patients (n = 18), UC patients in deep remission (n = 10), and healthy volunteers (n = 14) were recruited. Mucosa biopsies were collected during colonoscopies. Metabolomic analysis was performed by combined gas chromatography coupled to time-of-flight mass spectrometry (GC-TOF-MS) and ultra-high performance liquid chromatography coupled with mass spectrometry (UHPLC-MS). In total, 177 metabolites from 50 metabolic pathways were identified. The most prominent metabolome changes among the study groups were in lysophosphatidylcholine, acyl carnitine, and amino acid profiles. Several pathways were found perturbed according to the integrated pathway analysis. These pathways ranged from amino acid metabolism (such as tryptophan metabolism) to fatty acid metabolism, namely linoleic and butyrate. These metabolic changes during UC reflect the homeostatic disturbance in the gut, and highlight the importance of system biology approaches to identify key drivers of pathogenesis which prerequisite personalized medicine.

16.
Front Pediatr ; 7: 347, 2019.
Article in English | MEDLINE | ID: mdl-31552203

ABSTRACT

Purpose: To evaluate effects on growth and infection rates of supplementing infant formula with the probiotic Lactobacillus paracasei ssp. paracasei strain F19 (F19) or bovine milk fat globule membrane (MFGM). Methods: In a double-blind, randomized controlled trial, 600 infants were randomized to a formula supplemented with F19 or MFGM, or to standard formula (SF). A breastfed group was recruited as reference (n = 200).The intervention lasted from age 21 ± 7 days until 4 months, and infants were followed until age one year. Results: Both experimental formulas were well tolerated and resulted in high compliance. The few reported adverse events were not likely related to formula, with the highest rates in the SF group, significantly higher than for the F19-supplemented infants (p = 0.046). Weight or length gain did not differ during or after the intervention among the formula-fed groups, with satisfactory growth. During the intervention, overall, the experimental formula groups did not have more episodes of diarrhea, fever, or days with fever than the breastfed infants. However, compared to the breastfed infants, the SF group had more fever episodes (p = 0.021) and days with fever (p = 0.036), but not diarrhea. Compared with the breastfed group, the F19-supplemented infants but not the other two formula groups had more visits/unscheduled hospitalizations (p = 0.015) and borderline more episodes of upper respiratory tract infections (p = 0.048). Conclusions: Both the MFGM- and F19-supplemented formulas were safe and well-tolerated, leading to few adverse effects, similar to the breastfed group and unlike the SF group. During the intervention, the MFGM-supplemented infants did not differ from the breastfed infants in any primary outcome.

17.
BMC Public Health ; 19(1): 1095, 2019 08 13.
Article in English | MEDLINE | ID: mdl-31409308

ABSTRACT

An evaluation of Västerbotten Intervention Programme (VIP) was recently conducted by San Sebastian et al. (BMC Public Health 19:202, 2019). Evaluation of health care interventions of this kind require 1) an understanding of both the design and the nature of the intervention, 2) correct definition of the target population, and 3) careful choice of the appropriate evaluation method. In this correspondence, we review the approach used by San Sebastian et al. as relates to these three criteria. Within this framework, we suggest important explanations for why the conclusions drawn by these authors contradict a large body of research on the effectiveness of the VIP.


Subject(s)
Cardiovascular Diseases , Population Health , Counseling , Humans , Interrupted Time Series Analysis , Sweden
18.
Inflamm Bowel Dis ; 25(11): 1780-1787, 2019 10 18.
Article in English | MEDLINE | ID: mdl-31077307

ABSTRACT

BACKGROUND: The onset of ulcerative colitis (UC) is associated with alterations in lipid metabolism and a disruption of the balance between pro- and anti-inflammatory molecules. Only a few studies describe the mucosal lipid biosignatures during active UC. Moreover, the dynamics of lipid metabolism in the remission state is poorly defined. Therefore, this study aims to characterize mucosal lipid profiles in treatment-naïve UC patients and deep remission UC patients compared with healthy subjects. METHODS: Treatment-naïve UC patients (n = 21), UC patients in deep remission (n = 12), and healthy volunteers (n = 14) were recruited. The state of deep remission was defined by histological and immunological remission defined by a normalized TNF-α gene expression. Mucosa biopsies were collected by colonoscopy. Lipid analysis was performed by means of ultra-high performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS-MS). In total, 220 lipids from 11 lipid classes were identified. RESULTS: The relative concentration of 122 and 36 lipids was altered in UC treatment-naïve patients and UC remission patients, respectively, compared with healthy controls. The highest number of significant variations was in the phosphatidylcholine (PC), ceramide (Cer), and sphingomyelin (SM) composition. Multivariate analysis revealed discrimination among the study groups based on the lipid profile. Furthermore, changes in phosphatidylethanolamine(38:3), Cer(d18:1/24:0), and Cer(d18:1/24:2) were most distinctive between the groups. CONCLUSION: This study revealed a discriminant mucosal lipid composition pattern between treatment-naïve UC patients, deep remission UC patients, and healthy controls. We report several distinctive lipids, which might be involved in the inflammatory response in UC, and could reflect the disease state.


Subject(s)
Colitis, Ulcerative/metabolism , Colitis, Ulcerative/physiopathology , Intestinal Mucosa/chemistry , Lipidomics , Lipids/chemistry , Adult , Aged , Aged, 80 and over , Case-Control Studies , Chromatography, Liquid , Colonoscopy , Female , Humans , Male , Middle Aged , Multivariate Analysis , Tandem Mass Spectrometry , Young Adult
19.
Article in English | MEDLINE | ID: mdl-30445289

ABSTRACT

Variability in the levels of GSH and GSSG in plasma is suggested to derive from inadequate pre-processing methods. The aim of this study was to develop a protocol for comparable and reliable measurements of GSH/GSSG. Venous blood from 8 healthy individuals were collected and divided into 7 different pre-processing procedures. For three of the samples an extraction mixture was added after 0 (baseline), 4 and 8 min and for three of the samples the extraction mixture was added at different times during defrost. A worst case scenario where a sample was left in a cool box during 6 h was also included. The samples were analyzed with UHPLC-ESI-MSMS. A large difference in the levels of GSH and GSSG were identified and it was clearly associated with the sample handling procedures. A sample left untreated for 4 min will have significantly reduced amount of GSH. Stability tests showed that the level of GSH was reduced after 3 months in -80 °C.


Subject(s)
Chromatography, High Pressure Liquid/methods , Glutathione Disulfide/blood , Glutathione Disulfide/chemistry , Glutathione/blood , Glutathione/chemistry , Drug Stability , Humans , Linear Models , Reproducibility of Results , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry/methods
20.
J Chromatogr A ; 1568: 229-234, 2018 Sep 21.
Article in English | MEDLINE | ID: mdl-30007791

ABSTRACT

Chromatographic systems coupled with mass spectrometry detection are widely used in biological studies investigating how levels of biomolecules respond to different internal and external stimuli. Such changes are normally expected to be of low magnitude and therefore all experimental factors that can influence the analysis need to be understood and minimized. Run order effect is commonly observed and constitutes a major challenge in chromatography-mass spectrometry based profiling studies that needs to be addressed before the biological evaluation of measured data is made. So far there is no established consensus, metric or method that quickly estimates the size of this effect. In this paper we demonstrate how orthogonal projections to latent structures (OPLS®) can be used for objective quantification of the run order effect in profiling studies. The quantification metric is expressed as the amount of variation in the experimental data that is correlated to the run order. One of the primary advantages with this approach is that it provides a fast way of quantifying run-order effect for all detected features, not only internal standards. Results obtained from quantification of run order effect as provided by the OPLS can be used in the evaluation of data normalization, support the optimization of analytical protocols and identification of compounds highly influenced by instrumental drift. The application of OPLS for quantification of run order is demonstrated on experimental data from plasma profiling performed on three analytical platforms: GCMS metabolomics, LCMS metabolomics and LCMS lipidomics.


Subject(s)
Chromatography, Gas/methods , Chromatography, Liquid/methods , Mass Spectrometry/methods , Algorithms , Animals , Child , Humans , Lipid Metabolism , Malaria/metabolism , Metabolomics , Mice , Sepsis/blood , Tissue Banks
SELECTION OF CITATIONS
SEARCH DETAIL
...