Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Transl Sci ; 17(6): e13827, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38924306

ABSTRACT

For the same age, sex, and dosage, there can be significant variation in fertility outcomes in childhood cancer survivors. Genetics may explain this variation. This study aims to: (i) review the genetic contributions to infertility, (ii) search for pharmacogenomic studies looking at interactions of cancer treatment, genetic predisposition and fertility-related outcomes. Systematic searches in MEDLINE Ovid, Embase Classic+Embase, and PubMed were conducted using the following selection criteria: (i) pediatric, adolescent, and young adult cancer survivors, below 25 years old at the time of diagnosis, (ii) fertility outcome measures after cancer therapy, (iii) genetic considerations. Studies were excluded if they were (i) conducted in animal models, (ii) were not published in English, (iii) editorial letters, (iv) theses. Articles were screened in Covidence by at least two independent reviewers, followed by data extraction and a risk of bias assessment using the Quality in Prognostic Studies tool. Eight articles were reviewed with a total of 29 genes. Outcome measures included sperm concentration, azoospermia, AMH levels, assessment of premature menopause, ever being pregnant or siring a pregnancy. Three studies included replication cohorts, which attempted replication of SNP findings for NPY2R, BRSK1, FANCI, CYP2C19, CYP3A4, and CYP2B6. Six studies were rated with a high risk of bias. Differing methods may explain a lack of replication, and small cohorts may have contributed to few significant findings. Larger, prospective longitudinal studies with an unbiased genome-wide focus will be important to replicate significant results, which can be applied clinically.


Subject(s)
Cancer Survivors , Fertility , Neoplasms , Adolescent , Child , Female , Humans , Male , Young Adult , Antineoplastic Agents/adverse effects , Cancer Survivors/statistics & numerical data , Fertility/genetics , Fertility/drug effects , Infertility/genetics , Infertility/etiology , Infertility/therapy , Neoplasms/genetics , Neoplasms/drug therapy , Pharmacogenetics , Pharmacogenomic Testing
2.
BMJ Open ; 14(5): e085115, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38760050

ABSTRACT

INTRODUCTION: DNA-informed prescribing (termed pharmacogenomics, PGx) is the epitome of personalised medicine. Despite international guidelines existing, its implementation in paediatric oncology remains sparse. METHODS AND ANALYSIS: Minimising Adverse Drug Reactions and Verifying Economic Legitimacy-Pharmacogenomics Implementation in Children is a national prospective, multicentre, randomised controlled trial assessing the impact of pre-emptive PGx testing for actionable PGx variants on adverse drug reaction (ADR) incidence in patients with a new cancer diagnosis or proceeding to haematopoetic stem cell transplant. All ADRs will be prospectively collected by surveys completed by parents/patients using the National Cancer Institute Pediatric Patient Reported [Ped-PRO]-Common Terminology Criteria for Adverse Events (CTCAE) (weeks 1, 6 and 12). Pharmacist will assess for causality and severity in semistructured interviews using the CTCAE and Liverpool Causality Assessment Tool. The primary outcome is a reduction in ADRs among patients with actionable PGx variants, where an ADR will be considered as any CTCAE grade 2 and above for non-haematological toxicities and any CTCAE grade 3 and above for haematological toxicities Cost-effectiveness of pre-emptive PGx (secondary outcome) will be compared with standard of care using hospital inpatient and outpatient data along with the validated Childhood Health Utility 9D Instrument. Power and statistics considerations: A sample size of 440 patients (220 per arm) will provide 80% power to detect a 24% relative risk reduction in the primary endpoint of ADRs (two-sided α=5%, 80% vs 61%), allowing for 10% drop-out. ETHICS AND DISSEMINATION: The ethics approval of the trial has been obtained from the Royal Children's Hospital Ethics Committee (HREC/89083/RCHM-2022). The ethics committee of each participating centres nationally has undertaken an assessment of the protocol and governance submission. TRIAL REGISTRATION NUMBER: NCT05667766.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Pharmacogenetics , Humans , Child , Drug-Related Side Effects and Adverse Reactions/prevention & control , Prospective Studies , Randomized Controlled Trials as Topic , Neoplasms/drug therapy , Neoplasms/genetics , Multicenter Studies as Topic , Precision Medicine/economics , Hematopoietic Stem Cell Transplantation
3.
Pharmacol Res Perspect ; 11(6): e01150, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38013228

ABSTRACT

Pharmacogenomics remains underutilized in clinical practice, despite the existence of internationally recognized, evidence-based guidelines. This systematic review aims to understand enablers and barriers to pharmacogenomics implementation in pediatric oncology by assessing the knowledge, attitudes, and practice of healthcare professionals and consumers. Medline, Embase, Emcare, and PsycINFO database searches identified 146 relevant studies of which only three met the inclusion criteria. These studies reveal that consumers were concerned with pharmacogenomic test costs, insurance discrimination, data sharing, and privacy. Healthcare professionals possessed mostly positive attitudes toward pharmacogenomic testing yet identified lack of experience and training as barriers to implementation. Education emerged as the key enabler, reported in all three studies and both healthcare professionals and consumer groups. However, despite the need for education, no studies utilizing a pediatric oncology consumer or healthcare professional group have reported on the implementation or analysis of a pharmacogenomic education program in pediatric oncology. Increased access to guidelines, expert collaborations and additional guidance interpreting results were further enablers established by healthcare professionals. The themes identified mirror those reported in broader pediatric genetic testing literature. As only a small number of studies met inclusion criteria for this review, further research is warranted to elicit implementation determinants and advance pediatric pharmacogenomics.


Subject(s)
Neoplasms , Pharmacogenetics , Humans , Child , Health Knowledge, Attitudes, Practice , Health Personnel/education , Medical Oncology , Neoplasms/drug therapy , Neoplasms/genetics
4.
Proc Natl Acad Sci U S A ; 120(19): e2211510120, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37126720

ABSTRACT

Chondrocytes and osteoblasts differentiated from induced pluripotent stem cells (iPSCs) will provide insights into skeletal development and genetic skeletal disorders and will generate cells for regenerative medicine applications. Here, we describe a method that directs iPSC-derived sclerotome to chondroprogenitors in 3D pellet culture then to articular chondrocytes or, alternatively, along the growth plate cartilage pathway to become hypertrophic chondrocytes that can transition to osteoblasts. Osteogenic organoids deposit and mineralize a collagen I extracellular matrix (ECM), mirroring in vivo endochondral bone formation. We have identified gene expression signatures at key developmental stages including chondrocyte maturation, hypertrophy, and transition to osteoblasts and show that this system can be used to model genetic cartilage and bone disorders.


Subject(s)
Cartilage , Induced Pluripotent Stem Cells , Humans , Cartilage/metabolism , Chondrocytes/metabolism , Cell Differentiation , Osteoblasts , Induced Pluripotent Stem Cells/metabolism
5.
Stem Cell Res ; 48: 101942, 2020 10.
Article in English | MEDLINE | ID: mdl-32771907

ABSTRACT

To produce in vitro models of human chondrodysplasias caused by dominant missense mutations in TRPV4, we used CRISPR/Cas9 gene editing to introduce two heterozygous patient mutations (p.F273L and p.P799L) into an established control human iPSC line. This control line expressed a fluorescent reporter (tdTomato) at the SOX9 locus to allow real-time monitoring of cartilage differentiation by SOX9 expression. Both TRPV4 mutant iPSC lines had normal karyotypes, expressed pluripotency markers, and could differentiate into cells representative of the three embryonic germ layers. These iPSC lines, with the parental isogenic control, will be used to study TRPV4 chondrodysplasia mechanisms and explore therapeutic approaches.


Subject(s)
Gene Editing , Induced Pluripotent Stem Cells , CRISPR-Cas Systems/genetics , Clustered Regularly Interspaced Short Palindromic Repeats , Humans , SOX9 Transcription Factor , TRPV Cation Channels/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...