Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 18(11): e0294438, 2023.
Article in English | MEDLINE | ID: mdl-37983208

ABSTRACT

BCR-ABL tyrosine kinase inhibitors (TKIs) have dramatically improved survival in Philadelphia chromosome-positive leukemias. Newer BCR-ABL TKIs provide superior cancer outcomes but with increased risk of acute arterial thrombosis, which further increases in patients with cardiovascular comorbidities and mitigates survival benefits compared to imatinib. Recent studies implicate endothelial cell (EC) damage in this toxicity by unknown mechanisms with few side-by-side comparisons of multiple TKIs and with no available data on endothelial impact of recently approved TKIs or novels TKIs being tested in clinical trials. To characterize BCR-ABL TKI induced EC dysfunction we exposed primary human umbilical vein ECs in 2D and 3D culture to clinically relevant concentrations of seven BCR-ABL TKIs and quantified their impact on EC scratch-wound healing, viability, inflammation, and permeability mechanisms. Dasatinib, ponatinib, and nilotinib, the TKIs associated with thrombosis in patients, all significantly impaired EC wound healing, survival, and proliferation compared to imatinib, but only dasatinib and ponatinib impaired cell migration and only nilotinib enhanced EC necrosis. Dasatinib and ponatinib increased leukocyte adhesion to ECs with upregulation of adhesion molecule expression in ECs (ICAM1, VCAM1, and P-selectin) and leukocytes (PSGL1). Dasatinib increased permeability and impaired cell junctional integrity in human engineered microvessels, consistent with its unique association with pleural effusions. Of the new agents, bafetinib decreased EC viability and increased microvessel permeability while asciminib and radotinib did not impact any EC function tested. In summary, the vasculotoxic TKIs (dasatinib, ponatinib, nilotinib) cause EC toxicity but with mechanistic differences, supporting the potential need for drug-specific vasculoprotective strategies. Asciminib and radotinib do not induce EC toxicity at clinically relevant concentrations suggesting a better safety profile.


Subject(s)
Antineoplastic Agents , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Thrombosis , Humans , Imatinib Mesylate/adverse effects , Dasatinib/adverse effects , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Protein Kinase Inhibitors/toxicity , Endothelial Cells , Thrombosis/drug therapy , Fusion Proteins, bcr-abl , Antineoplastic Agents/therapeutic use
2.
Circ Res ; 132(6): 674-689, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36815487

ABSTRACT

BACKGROUND: Preeclampsia is a syndrome of high blood pressure (BP) with end organ damage in late pregnancy that is associated with high circulating soluble VEGF receptor (sFlt1 [soluble Fms-like tyrosine kinase 1]). Women exposed to preeclampsia have a substantially increased risk of hypertension after pregnancy, but the mechanism remains unknown, leaving a missed interventional opportunity. After preeclampsia, women have enhanced sensitivity to hypertensive stress. Since smooth muscle cell mineralocorticoid receptors (SMC-MR) are activated by hypertensive stimuli, we hypothesized that high sFlt1 exposure in pregnancy induces a postpartum state of enhanced SMC-MR responsiveness. METHODS: Postpartum BP response to high salt intake was studied in women with prior preeclampsia. MR transcriptional activity was assessed in vitro in sFlt1-treated SMC by reporter assays and PCR. Preeclampsia was modeled by transient sFlt1 expression in pregnant mice. Two months post-partum, mice were exposed to high salt and then to AngII (angiotensin II) and BP and vasoconstriction were measured. RESULTS: Women exposed to preeclampsia had significantly enhanced salt sensitivity of BP verses those with a normotensive pregnancy. sFlt1 overexpression during pregnancy in mice induced elevated BP and glomerular endotheliosis, which resolved post-partum. The sFlt1 exposed post-partum mice had significantly increased BP response to 4% salt diet and to AngII infusion. In vitro, SMC-MR transcriptional activity in response to aldosterone or AngII was significantly increased after transient exposure to sFlt1 as was aldosterone-induced expression of AngII type 1 receptor. Post-partum, SMC-MR-KO mice were protected from the enhanced response to hypertensive stimuli after preeclampsia. Mechanistically, preeclampsia mice exposed to postpartum hypertensive stimuli develop enhanced aortic stiffness, microvascular myogenic tone, AngII constriction, and AngII type 1 receptor expression, all of which were prevented in SMC-MR-KO littermates. CONCLUSIONS: These data support that sFlt1-induced vascular injury during preeclampsia produces a persistent state of enhanced sensitivity of SMC-MR to activation. This contributes to postpartum hypertension in response to common stresses and supports testing of MR antagonism to mitigate the increased cardiovascular risk in women after PE.


Subject(s)
Hypertension , Pre-Eclampsia , Humans , Pregnancy , Female , Mice , Animals , Pre-Eclampsia/etiology , Pre-Eclampsia/metabolism , Vascular Endothelial Growth Factor Receptor-1/genetics , Vascular Endothelial Growth Factor Receptor-1/metabolism , Receptors, Mineralocorticoid/genetics , Aldosterone , Muscle, Smooth/metabolism
3.
Arterioscler Thromb Vasc Biol ; 42(1): 35-48, 2022 01.
Article in English | MEDLINE | ID: mdl-34758633

ABSTRACT

OBJECTIVE: Animal models of atherosclerosis are used extensively to interrogate molecular mechanisms in serial fashion. We tested whether a novel systems biology approach to integration of preclinical data identifies novel pathways and regulators in human disease. Approach and Results: Of 716 articles published in ATVB from 1995 to 2019 using the apolipoprotein E knockout mouse to study atherosclerosis, data were extracted from 360 unique studies in which a gene was experimentally perturbed to impact plaque size or composition and analyzed using Ingenuity Pathway Analysis software. TREM1 (triggering receptor expressed on myeloid cells) signaling and LXR/RXR (liver X receptor/retinoid X receptor) activation were identified as the top atherosclerosis-associated pathways in mice (both P<1.93×10-4, TREM1 implicated early and LXR/RXR in late atherogenesis). The top upstream regulatory network in mice (sc-58125, a COX2 inhibitor) linked 64.0% of the genes into a single network. The pathways and networks identified in mice were interrogated by testing for associations between the genetically predicted gene expression of each mouse pathway-identified human homolog with clinical atherosclerosis in a cohort of 88 660 human subjects. Homologous human pathways and networks were significantly enriched for gene-atherosclerosis associations (empirical P<0.01 for TREM1 and LXR/RXR pathways and COX2 network). This included 12(60.0%) TREM1 pathway genes, 15(53.6%) LXR/RXR pathway genes, and 67(49.3%) COX2 network genes. Mouse analyses predicted, and human study validated, the strong association of COX2 expression (PTGS2) with increased likelihood of atherosclerosis (odds ratio, 1.68 per SD of genetically predicted gene expression; P=1.07×10-6). CONCLUSIONS: PRESCIANT (Preclinical Science Integration and Translation) leverages published preclinical investigations to identify high-confidence pathways, networks, and regulators of human disease.


Subject(s)
Apolipoproteins E/genetics , Atherosclerosis/genetics , Gene Regulatory Networks , Systems Biology , Adult , Aged , Animals , Apolipoproteins E/deficiency , Atherosclerosis/metabolism , Atherosclerosis/pathology , Disease Models, Animal , Female , Genetic Predisposition to Disease , Humans , Male , Mice, Knockout, ApoE , Middle Aged , Phenotype , Plaque, Atherosclerotic , Risk Assessment , Risk Factors , Sex Factors , Species Specificity
4.
Neuropsychopharmacology ; 43(5): 1088-1098, 2018 04.
Article in English | MEDLINE | ID: mdl-29052614

ABSTRACT

Growing recognition of persistent cognitive defects associated with electroconvulsive therapy (ECT), a highly effective and commonly used antidepressant treatment, has spurred interest in identifying its mechanism of action to guide development of safer treatment options. However, as repeated seizure activity elicits a bewildering array of electrophysiological and biochemical effects, this goal has remained elusive. We have examined whether deletion of Narp, an immediate early gene induced by electroconvulsive seizures (ECS), blocks its antidepressant efficacy. Based on multiple measures, we infer that Narp knockout mice undergo normal seizure activity in this paradigm, yet fail to display antidepressant-like behavioral effects of ECS. Although Narp deletion does not suppress ECS-induced proliferation in the dentate gyrus, it blocks dendritic outgrowth of immature granule cell neurons in the dentate molecular layer induced by ECS. Taken together, these findings indicate that Narp contributes to the antidepressant action of ECT and implicate the ability of ECS to induce dendritic arborization of differentiating granule cells as a relevant step in eliciting this response.


Subject(s)
C-Reactive Protein/physiology , Cell Proliferation/physiology , Electroshock , Nerve Tissue Proteins/physiology , Neuronal Plasticity/physiology , Seizures/physiopathology , Animals , C-Reactive Protein/genetics , Dentate Gyrus/physiology , Male , Mice , Mice, Knockout , Nerve Tissue Proteins/genetics , Neurons/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...