Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
PLoS Comput Biol ; 18(6): e1010236, 2022 06.
Article in English | MEDLINE | ID: mdl-35759459

ABSTRACT

Microtubules and their post-translational modifications are involved in major cellular processes. In severe diseases such as neurodegenerative disorders, tyrosinated tubulin and tyrosinated microtubules are in lower concentration. We present here a mechanistic mathematical model of the microtubule tyrosination cycle combining computational modeling and high-content image analyses to understand the key kinetic parameters governing the tyrosination status in different cellular models. That mathematical model is parameterized, firstly, for neuronal cells using kinetic values taken from the literature, and, secondly, for proliferative cells, by a change of two parameter values obtained, and shown minimal, by a continuous optimization procedure based on temporal logic constraints to formalize experimental high-content imaging data. In both cases, the mathematical models explain the inability to increase the tyrosination status by activating the Tubulin Tyrosine Ligase enzyme. The tyrosinated tubulin is indeed the product of a chain of two reactions in the cycle: the detyrosinated microtubule depolymerization followed by its tyrosination. The tyrosination status at equilibrium is thus limited by both reaction rates and activating the tyrosination reaction alone is not effective. Our computational model also predicts the effect of inhibiting the Tubulin Carboxy Peptidase enzyme which we have experimentally validated in MEF cellular model. Furthermore, the model predicts that the activation of two particular kinetic parameters, the tyrosination and detyrosinated microtubule depolymerization rate constants, in synergy, should suffice to enable an increase of the tyrosination status in living cells.


Subject(s)
Tubulin , Tyrosine , Drug Evaluation, Preclinical , Microtubules/chemistry , Models, Theoretical
2.
J Pharmacol Exp Ther ; 2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34706966

ABSTRACT

In mammals, MT1 and MT2 melatonin receptors are high affinity G protein-coupled receptors and are thought to be involved in the integration of the melatonin signaling throughout the brain and periphery. In the present study, we describe a new melatonin binding site, named MTx, with a peculiar pharmacological profile. This site had a low affinity for 2-[125I]-melatonin in saturation assays in hypothalamus and retina (pKD = 9.13 {plus minus} 0.05, Bmax = 1.12 {plus minus} 0.11 fmol/mg protein and pKD = 8.81 {plus minus} 0.50, Bmax = 7.65 {plus minus} 2.64 fmol/mg protein, respectively) and a very high affinity, in competition assays, for melatonin (pKi = 13.08 {plus minus} 0.18), and other endogenous compounds. Using autoradiography, we showed a preferential localization of the MTx in periventricular areas of the sheep brain, with a density 3 to 8 times higher than those observed for ovine MT1 In addition, using a set of well-characterized ligands, we showed that this site did not correspond to any of the following receptors: MT1, MT2, MT3 , D1, D2, noradrenergic, nor 5-HT2 Based on its affinity for melatonin, MTx did not seem to be implicated in the integration of cerebral melatonin concentration variations since they were saturating for MTx. Nevertheless, it remained of prime importance because of its periventricular distribution, in close contact with the CSF, and its peculiar pharmacological profile responding to both melatoninergic and serotoninergic compounds. Significance Statement Herein a putative new melatonin binding site is described in sheep brain parts in close contact with the 3rd ventricle. The characteristics of the pharmacological profile of this site is different from anything previously reported in the literature. The present work forms the basis of future full pharmacological characterization.

3.
Med Sci (Paris) ; 37(3): 249-257, 2021 Mar.
Article in French | MEDLINE | ID: mdl-33739272

ABSTRACT

The advent of the molecular biology and the completion of the human genome sequencing prompted the pharmaceutical industry to progressively implement target-centric drug discovery strategies. However, concerns regarding the research and development productivity during the last ten years, combined with technological developments in high-content screening, automation, image analysis and artificial intelligence triggered a renewed interest for the phenotypic drug discovery approaches. Target-centric and phenotypic approaches are more and more considered complementary, hence, positioning the target deconvolution on the critical path. This review analyzes the evolution of the target-centric and phenotypic approaches, focusing more specifically on the high-content screening and the target deconvolution technologies currently available.


TITLE: Du criblage à haut contenu à la déconvolution de cibles - Nouvelle donne pour les approches phénotypiques. ABSTRACT: L'avènement de la biologie moléculaire et l'achèvement du séquençage du génome humain ont conduit l'industrie pharmaceutique à progressivement implémenter des approches dites cible-centriques pour identifier les candidats médicaments. Cependant, la faible productivité de la recherche et du développement en ce début de millénaire, combinée aux évolutions technologiques dans des domaines tels que l'ingénierie cellulaire, le criblage à haut contenu, la robotique, l'analyse d'images et l'intelligence artificielle, ont nourri un fort regain d'intérêt pour les approches phénotypiques. De plus en plus fréquemment, les approches cible-centriques et phénotypiques sont considérées de façon complémentaire, positionnant ainsi les techniques de déconvolution1 de cible sur le chemin critique de la découverte et du développement de médicaments. Cette revue analyse l'évolution des approches cible-centriques versus phénotypiques, en se focalisant plus particulièrement sur le criblage à haut contenu et les différentes techniques de déconvolution de cible aujourd'hui disponibles.


Subject(s)
Drug Discovery/methods , Humans , Phenotype , Research
4.
Sci Rep ; 8(1): 13167, 2018 09 03.
Article in English | MEDLINE | ID: mdl-30177816

ABSTRACT

Hibernation is an exceptional physiological response to a hostile environment, characterized by a seasonal period of torpor cycles involving dramatic reductions of body temperature and metabolism, and arousal back to normothermia. As the mechanisms regulating hibernation are still poorly understood, here we analysed the expression of genes involved in energy homeostasis, torpor regulation, and daily or seasonal timing using digital droplet PCR in various central and peripheral tissues sampled at different stages of torpor/arousal cycles in the European hamster. During torpor, the hypothalamus exhibited strongly down-regulated gene expression, suggesting that hypothalamic functions were reduced during this period of low metabolic activity. During both torpor and arousal, many structures (notably the brown adipose tissue) exhibited altered expression of deiodinases, potentially leading to reduced tissular triiodothyronine availability. During the arousal phase, all analysed tissues showed increased expression of the core clock genes Per1 and Per2. Overall, our data indicated that the hypothalamus and brown adipose tissue were the tissues most affected during the torpor/arousal cycle, and that clock genes may play critical roles in resetting the body's clocks at the beginning of the active period.


Subject(s)
Adipose Tissue, Brown/metabolism , Arousal/genetics , Cricetulus/genetics , Energy Metabolism/genetics , Hibernation/genetics , Hypothalamus/metabolism , Period Circadian Proteins/genetics , Animals , Circadian Rhythm/genetics , Cricetulus/metabolism , Europe , Gene Expression Profiling , Gene Expression Regulation , Gene Ontology , Iodide Peroxidase/genetics , Iodide Peroxidase/metabolism , Male , Molecular Sequence Annotation , Period Circadian Proteins/metabolism , Triiodothyronine/metabolism
5.
Curr Opin Pharmacol ; 42: 40-45, 2018 10.
Article in English | MEDLINE | ID: mdl-30032033

ABSTRACT

In recent years, questions about the sustainability of the current drug discovery process have triggered a revival of interest in phenotypic drug discovery approaches. This trend has clearly been amplified by the emergence of multiple cell-based assay technologies enabling a higher degree of translatability between in vitro conditions and physio-pathological situations, including induced pluripotent stem cells, three-dimensional models, co-culture and organ-on-a-chip systems, complemented by advances in gene editing technologies. Progress in High-Content Screening technology has also contributed to the recent excitement for phenotypic drug discovery approaches, bringing image-capture and processing, and data-analysis, to a level of content and throughput fully compatible with large scale drug discovery efforts. Nevertheless, implementation of HCS in discovery projects must be carefully considered, to ensure optimal performance and the generation of relevant data to enable the discovery of first-in-class medicines.


Subject(s)
Drug Discovery/methods , High-Throughput Screening Assays/methods , Pharmaceutical Preparations/chemistry , Gene Editing/methods , Humans
6.
J Cell Biol ; 217(2): 763-777, 2018 02 05.
Article in English | MEDLINE | ID: mdl-29229751

ABSTRACT

Epithelial-to-mesenchymal transition is implicated in metastasis, where carcinoma cells lose sessile epithelial traits and acquire mesenchymal migratory potential. The mesenchymal state is also associated with cancer stem cells and resistance to chemotherapy. It might therefore be therapeutically beneficial to promote epithelial identity in cancer. Because large-scale cell identity shifts are often orchestrated on an epigenetic level, we screened for candidate epigenetic factors and identified the histone methyltransferase SUV420H2 (KMT5C) as favoring the mesenchymal identity in pancreatic cancer cell lines. Through its repressive mark H4K20me3, SUV420H2 silences several key drivers of the epithelial state. Its knockdown elicited mesenchymal-to-epithelial transition on a molecular and functional level, and cells displayed decreased stemness and increased drug sensitivity. An analysis of human pancreatic cancer biopsies was concordant with these findings, because high levels of SUV420H2 correlated with a loss of epithelial characteristics in progressively invasive cancer. Together, these data indicate that SUV420H2 is an upstream epigenetic regulator of epithelial/mesenchymal state control.


Subject(s)
Epithelial-Mesenchymal Transition , Histone-Lysine N-Methyltransferase/metabolism , Pancreatic Neoplasms/metabolism , Cell Line, Tumor , Epigenesis, Genetic/genetics , Gene Expression Regulation, Neoplastic/genetics , Histone-Lysine N-Methyltransferase/genetics , Humans , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology
7.
Cancer Cell ; 32(2): 221-237.e13, 2017 08 14.
Article in English | MEDLINE | ID: mdl-28781121

ABSTRACT

Maintenance of phenotypic heterogeneity within cell populations is an evolutionarily conserved mechanism that underlies population survival upon stressful exposures. We show that the genomes of a cancer cell subpopulation that survives treatment with otherwise lethal drugs, the drug-tolerant persisters (DTPs), exhibit a repressed chromatin state characterized by increased methylation of histone H3 lysines 9 and 27 (H3K9 and H3K27). We also show that survival of DTPs is, in part, maintained by regulators of H3K9me3-mediated heterochromatin formation and that the observed increase in H3K9me3 in DTPs is most prominent over long interspersed repeat element 1 (LINE-1). Disruption of the repressive chromatin over LINE-1 elements in DTPs results in DTP ablation, which is partially rescued by reducing LINE-1 expression or function.


Subject(s)
Chromatin/genetics , Drug Resistance, Neoplasm/genetics , Epigenetic Repression/drug effects , Long Interspersed Nucleotide Elements/genetics , Neoplasms/pathology , Animals , Antineoplastic Agents/pharmacology , Gene Expression Regulation, Neoplastic , Genomic Instability/drug effects , Histone-Lysine N-Methyltransferase/metabolism , Histones/metabolism , Humans , Methylation , Mice , Mice, Nude , Mice, SCID , Neoplasms/drug therapy , Neoplasms/genetics , Stress, Physiological , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
8.
Cell Metab ; 24(5): 753-761, 2016 11 08.
Article in English | MEDLINE | ID: mdl-27618686

ABSTRACT

The role of essential amino acids in metabolic reprogramming of cancer cells is now well established, whereas the role of non-essential amino acids (NEAAs) in malignancy remains less clear. Here, we have identified an important role for the NEAA proline in the tumorigenic potential of a subset of cancer cells. By profiling a large panel of cancer cell lines, we observed that proline consumption and expression of proline biosynthesis enzymes were well correlated with clonogenic and tumorigenic potential. Moreover, proline starvation or inhibition of proline biosynthesis enzymes impaired clonogenic/tumorigenic potential. Cancer cells exhibiting dependency on exogenous proline displayed hyperactivation of the mTORC1-mediated 4EBP1 signaling axis, as well as unresolved ER stress. Exogenous proline alleviated ER stress and promoted cellular homeostasis and clonogenicity. Increased dependence on proline may therefore define a specific vulnerability in some cancers that can be exploited by proline depletion.


Subject(s)
Carcinogenesis/metabolism , Carcinogenesis/pathology , Endoplasmic Reticulum Stress , Multiprotein Complexes/metabolism , Proline/deficiency , TOR Serine-Threonine Kinases/metabolism , Animals , Cell Line , Cell Proliferation , Clone Cells , Mechanistic Target of Rapamycin Complex 1 , Mice , Phosphoproteins/metabolism , Proline/biosynthesis , Protein Biosynthesis , RNA Caps/metabolism
9.
Nat Commun ; 7: 12351, 2016 08 03.
Article in English | MEDLINE | ID: mdl-27484502

ABSTRACT

Acquired resistance to cancer drug therapies almost always occurs in advanced-stage patients even following a significant response to treatment. In addition to mutational mechanisms, various non-mutational resistance mechanisms have now been recognized. We previously described a chromatin-mediated subpopulation of reversibly drug-tolerant persisters that is dynamically maintained within a wide variety of tumour cell populations. Here we explore a potential role for microRNAs in such transient drug tolerance. Functional screening of 879 human microRNAs reveals miR-371-3p as a potent suppressor of drug tolerance. We identify PRDX6 (peroxiredoxin 6) as a key target of miR-371-3p in establishing drug tolerance by regulating PLA2/PKCα activity and reactive oxygen species. PRDX6 expression is associated with poor prognosis in cancers of multiple tissue origins. These findings implicate miR-371-3p as a suppressor of PRDX6 and suggest that co-targeting of peroxiredoxin 6 or modulating miR-371-3p expression together with targeted cancer therapies may delay or prevent acquired drug resistance.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm/drug effects , MicroRNAs/metabolism , Peroxiredoxin VI/metabolism , Base Sequence , Cell Line, Tumor , Down-Regulation/drug effects , Humans , MicroRNAs/genetics , Phospholipase C beta/metabolism , Phospholipases A2/metabolism , Protein Kinase C-alpha/metabolism
10.
Am J Physiol Heart Circ Physiol ; 311(1): H44-53, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27199128

ABSTRACT

Cardiomyocytes derived from human embryonic stem cells (hESCs) or induced pluripotent stem cells (hiPSCs) are increasingly used for in vitro assays and represent an interesting opportunity to increase the data throughput for drug development. In this work, we describe a 96-well recording of synchronous electrical activities from spontaneously beating hiPSC-derived cardiomyocyte monolayers. The signal was obtained with a fast-imaging plate reader using a submillisecond-responding membrane potential recording assay, FluoVolt, based on a newly derived voltage-sensitive fluorescent dye. In our conditions, the toxicity of the dye was moderate and compatible with episodic recordings for >3 h. We show that the waveforms recorded from a whole well or from a single cell-sized zone are equivalent and make available critical functional parameters that are usually accessible only with gold standard techniques like intracellular microelectrode recording. This approach allows accurate identification of the electrophysiological effects of reference drugs on the different phases of the cardiac action potential as follows: fast depolarization (lidocaine), early repolarization (nifedipine, Bay K8644, and veratridine), late repolarization (dofetilide), and diastolic slow depolarization (ivabradine). Furthermore, the data generated with the FluoVolt dye can be pertinently complemented with a calcium-sensitive dye for deeper characterization of the pharmacological responses. In a semiautomated plate reader, the two probes used simultaneously in 96-well plates provide an easy and powerful multiparametric assay to rapidly and precisely evaluate the cardiotropic profile of compounds for drug discovery or cardiac safety.


Subject(s)
Action Potentials/drug effects , Calcium Signaling/drug effects , Fluorescent Dyes/metabolism , High-Throughput Screening Assays , Induced Pluripotent Stem Cells/drug effects , Myocardial Contraction/drug effects , Myocytes, Cardiac/drug effects , Automation, Laboratory , Cell Line , Dose-Response Relationship, Drug , Fluorescent Dyes/toxicity , Humans , Induced Pluripotent Stem Cells/metabolism , Microscopy, Fluorescence , Myocytes, Cardiac/metabolism , Signal Processing, Computer-Assisted , Time Factors
11.
Biotechniques ; 59(4): 231-8, 240, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26458551

ABSTRACT

We developed a strategy for identifying modulators of juxtacrine signaling, triggered by a cell-surface ligand displayed on synthetic lipid bilayers, via cognate receptors on apposed cells. Using readouts for receptor lateral transport and intracellular signaling, we screened a small interfering RNA (siRNA) library and identified specific receptor tyrosine kinases (RTKs) that directly or indirectly modulate apoptosis signaling by a model death ligand through its cognate death receptors. This approach may be broadly useful for studying juxtacrine cell-cell signaling systems.


Subject(s)
Apoptosis/genetics , Cell Communication/genetics , TNF-Related Apoptosis-Inducing Ligand/metabolism , Cell Line, Tumor , Gene Expression Regulation , Humans , Ligands , Lipid Bilayers/chemical synthesis , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , RNA, Small Interfering/chemistry , RNA, Small Interfering/genetics , Receptors, Death Domain/biosynthesis , Receptors, Death Domain/genetics , Signal Transduction/genetics , TNF-Related Apoptosis-Inducing Ligand/chemistry , TNF-Related Apoptosis-Inducing Ligand/genetics
12.
J Biol Chem ; 290(43): 25834-46, 2015 Oct 23.
Article in English | MEDLINE | ID: mdl-26342081

ABSTRACT

The insulin/insulin-like growth factor (IGF)-1 signaling pathway (ISP) plays a fundamental role in long term health in a range of organisms. Protein kinases including Akt and ERK are intimately involved in the ISP. To identify other kinases that may participate in this pathway or intersect with it in a regulatory manner, we performed a whole kinome (779 kinases) siRNA screen for positive or negative regulators of the ISP, using GLUT4 translocation to the cell surface as an output for pathway activity. We identified PFKFB3, a positive regulator of glycolysis that is highly expressed in cancer cells and adipocytes, as a positive ISP regulator. Pharmacological inhibition of PFKFB3 suppressed insulin-stimulated glucose uptake, GLUT4 translocation, and Akt signaling in 3T3-L1 adipocytes. In contrast, overexpression of PFKFB3 in HEK293 cells potentiated insulin-dependent phosphorylation of Akt and Akt substrates. Furthermore, pharmacological modulation of glycolysis in 3T3-L1 adipocytes affected Akt phosphorylation. These data add to an emerging body of evidence that metabolism plays a central role in regulating numerous biological processes including the ISP. Our findings have important implications for diseases such as type 2 diabetes and cancer that are characterized by marked disruption of both metabolism and growth factor signaling.


Subject(s)
Glucose/metabolism , Insulin-Like Growth Factor I/metabolism , Insulin/metabolism , Phosphofructokinase-2/metabolism , Protein Kinases/metabolism , Signal Transduction , 3T3-L1 Cells , Animals , Glucose Transporter Type 4/metabolism , HeLa Cells , Humans , Mice , RNA, Small Interfering/genetics
13.
Oncotarget ; 5(17): 7328-41, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-25193862

ABSTRACT

Epithelial to mesenchymal transition (EMT) is a key process in embryonic development and has been associated with cancer metastasis and drug resistance. For example, in EGFR mutated non-small cell lung cancers (NSCLC), EMT has been associated with acquired resistance to the EGFR inhibitor erlotinib. Moreover, "EGFR-addicted" cancer cell lines induced to undergo EMT become erlotinib-resistant in vitro. To identify potential therapeutic vulnerabilities specifically within these mesenchymal, erlotinib-resistant cells, we performed a small molecule screen of ~200 established anti-cancer agents using the EGFR mutant NSCLC HCC827 cell line and a corresponding mesenchymal derivative line. The mesenchymal cells were more resistant to most tested agents; however, a small number of agents showed selective growth inhibitory activity against the mesenchymal cells, with the most potent being the Abl/Src inhibitor, dasatinib. Analysis of the tyrosine phospho-proteome revealed several Src/FAK pathway kinases that were differentially phosphorylated in the mesenchymal cells, and RNAi depletion of the core Src/FAK pathway components in these mesenchymal cells caused apoptosis. These findings reveal a novel role for Src/FAK pathway kinases in drug resistance and identify dasatinib as a potential therapeutic for treatment of erlotinib resistance associated with EMT.


Subject(s)
Carcinoma, Non-Small-Cell Lung/metabolism , Drug Resistance, Neoplasm/physiology , Epithelial-Mesenchymal Transition/physiology , Focal Adhesion Kinase 1/metabolism , Lung Neoplasms/metabolism , src-Family Kinases/metabolism , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Dasatinib , Drug Resistance, Neoplasm/drug effects , Epithelial-Mesenchymal Transition/drug effects , ErbB Receptors/genetics , Erlotinib Hydrochloride , Flow Cytometry , Fluorescent Antibody Technique , Genes, erbB-1 , Humans , Immunoblotting , Mice , Mice, Nude , Mutation , Pyrimidines/pharmacology , Quinazolines/pharmacology , Signal Transduction/drug effects , Signal Transduction/physiology , Thiazoles/pharmacology , Xenograft Model Antitumor Assays
14.
Methods Enzymol ; 544: 129-60, 2014.
Article in English | MEDLINE | ID: mdl-24974289

ABSTRACT

Despite the knowledge accumulated during the last two decades about programmed cell death, further investigations of the complex regulatory network of apoptosis, including the extrinsic pathways, are still needed to gain an exhaustive and comprehensive understanding of this critical biological process. In addition, the identification of novel modulators of apoptosis may represent a good opportunity for making new paths into an otherwise heavily investigated area, therefore providing a molecular basis for new therapeutic strategies. In the last decade, RNA interference has become the technology of choice for discovering genes that encode molecules with previously unknown functions in biological pathways of interest. Various RNAi reagents and library formats have been developed and harnessed for high-throughput screening technologies to enable almost limitless investigation to uncover gene functions and networks in the context of basic biology and biomedical research including cancer biology. Although RNAi screening has been demonstrated to be a very powerful tool, various caveats and pitfalls have been progressively uncovered, including, but not limited to the enduring off-target effects. As the novelty of its bells and whistles have begun to diminish, functional genomic screens have morphed into a specialized field within the high-throughput screening community, where expert investigators progressively establish rigorous strategies to mitigate most of its possible flaws. Using various examples of RNAi screens conducted to further understand the extrinsic apoptosis pathway, this chapter describes the different RNAi tools and screening formats available and reviews the parameters one has to critically consider in order to be successful in implementing this technology.


Subject(s)
Apoptosis , Genomics/methods , RNA Interference , RNA, Small Interfering/genetics , Signal Transduction , Animals , Gene Library , Humans
15.
Genes Dev ; 28(10): 1068-84, 2014 May 15.
Article in English | MEDLINE | ID: mdl-24788092

ABSTRACT

The spliceosome machinery is composed of multimeric protein complexes that generate a diverse repertoire of mRNA through coordinated splicing of heteronuclear RNAs. While somatic mutations in spliceosome components have been discovered in several cancer types, the molecular bases and consequences of spliceosome aberrations in cancer are poorly understood. Here we report for the first time that PRPF6, a member of the tri-snRNP (small ribonucleoprotein) spliceosome complex, drives cancer proliferation by preferential splicing of genes associated with growth regulation. Inhibition of PRPF6 and other tri-snRNP complex proteins, but not other snRNP spliceosome complexes, selectively abrogated growth in cancer cells with high tri-snRNP levels. High-resolution transcriptome analyses revealed that reduced PRPF6 alters the constitutive and alternative splicing of a discrete number of genes, including an oncogenic isoform of the ZAK kinase. These findings implicate an essential role for PRPF6 in cancer via splicing of distinct growth-related gene products.


Subject(s)
Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Alternative Splicing , Cell Line , Cell Line, Tumor , Cell Proliferation , Humans , Protein Isoforms , RNA Splicing Factors , Spliceosomes
16.
PLoS One ; 9(1): e84823, 2014.
Article in English | MEDLINE | ID: mdl-24400119

ABSTRACT

The growth and guidance of many axons in the developing nervous system require Netrin-mediated activation of Deleted in Colorectal Cancer (DCC) and other still unknown signaling cues. Commissural axon guidance defects are more severe in DCC mutant mice than Netrin-1 mutant mice, suggesting additional DCC activating signals besides Netrin-1 are involved in proper axon growth. Here we report that interaction screens on extracellular protein microarrays representing over 1,000 proteins uniquely identified Cerebellin 4 (CBLN4), a member of the C1q-tumor necrosis factor (TNF) family, and Netrin-1 as extracellular DCC-binding partners. Immunofluorescence and radio-ligand binding studies demonstrate that Netrin-1 competes with CBLN4 binding at an overlapping site within the membrane-proximal fibronectin domains (FN) 4-6 of DCC and binds with ∼5-fold higher affinity. CBLN4 also binds to the DCC homolog, Neogenin-1 (NEO1), but with a lower affinity compared to DCC. CBLN4-null mice did not show a defect in commissural axons of the developing spinal cord but did display a transient increase in the number of wandering axons in the brachial plexus, consistent with a role in axon guidance. Overall, the data solidifies CBLN4 as a bona fide DCC ligand and strengthens its implication in axon guidance.


Subject(s)
Receptors, Cell Surface/metabolism , Tumor Suppressor Proteins/metabolism , Animals , Axons/metabolism , Carrier Proteins , DCC Receptor , Embryonic Development/genetics , Humans , Kinetics , Ligands , Mice , Mutation , Nerve Growth Factors/metabolism , Nerve Tissue Proteins/metabolism , Netrin-1 , Neurogenesis/genetics , Neurons/metabolism , Protein Binding , Protein Interaction Domains and Motifs , Protein Interaction Mapping , Protein Precursors/metabolism , Receptors, Cell Surface/chemistry , Receptors, Cell Surface/genetics , Tumor Suppressor Proteins/chemistry , Tumor Suppressor Proteins/genetics
17.
Clin Cancer Res ; 19(13): 3681-92, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23685835

ABSTRACT

PURPOSE: The aim of this study was to identify conserved pharmacodynamic and potential predictive biomarkers of response to anti-VEGF therapy using gene expression profiling in preclinical tumor models and in patients. EXPERIMENTAL DESIGN: Surrogate markers of VEGF inhibition [VEGF-dependent genes or VEGF-dependent vasculature (VDV)] were identified by profiling gene expression changes induced in response to VEGF blockade in preclinical tumor models and in human biopsies from patients treated with anti-VEGF monoclonal antibodies. The potential value of VDV genes as candidate predictive biomarkers was tested by correlating high or low VDV gene expression levels in pretreatment clinical samples with the subsequent clinical efficacy of bevacizumab (anti-VEGF)-containing therapy. RESULTS: We show that VDV genes, including direct and more distal VEGF downstream endothelial targets, enable detection of VEGF signaling inhibition in mouse tumor models and human tumor biopsies. Retrospective analyses of clinical trial data indicate that patients with higher VDV expression in pretreatment tumor samples exhibited improved clinical outcome when treated with bevacizumab-containing therapies. CONCLUSIONS: In this work, we identified surrogate markers (VDV genes) for in vivo VEGF signaling in tumors and showed clinical data supporting a correlation between pretreatment VEGF bioactivity and the subsequent efficacy of anti-VEGF therapy. We propose that VDV genes are candidate biomarkers with the potential to aid the selection of novel indications as well as patients likely to respond to anti-VEGF therapy. The data presented here define a diagnostic biomarker hypothesis based on translational research that warrants further evaluation in additional retrospective and prospective trials.


Subject(s)
Angiogenesis Inhibitors/therapeutic use , Antineoplastic Agents/therapeutic use , Neoplasms/drug therapy , Neoplasms/metabolism , Signal Transduction/drug effects , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Vascular Endothelial Growth Factor A/metabolism , Angiogenesis Inhibitors/pharmacology , Animals , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Monoclonal, Humanized/therapeutic use , Antineoplastic Agents/pharmacology , Bevacizumab , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Disease Models, Animal , Drug Evaluation, Preclinical , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , Humans , Mice , Neoplasms/genetics , Neoplasms/mortality , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Neuroendocrine Tumors/drug therapy , Neuroendocrine Tumors/genetics , Neuroendocrine Tumors/metabolism , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism
18.
Blood ; 121(7): e25-33, 2013 Feb 14.
Article in English | MEDLINE | ID: mdl-23255559

ABSTRACT

Despite significant progresses, cell-based assays still have major limitations part to because of their plate format. Here, we present a wall-less plate technology based on unique liquid dynamics named DropArray that takes advantage of hydrophobic and hydrophilic surface properties. Liquid velocities within the DropArray plate were quantified through fluid dynamics simulation and complete retention of suspension cells experimentally demonstrated within the range of simulated shear stresses. Subsequently, we compared the DropArray technology with conventional microtiter plates in a cell-based protein-binding assay. Although the wall-less plate produced similar results with adherent cells, the advantage of the DropArray technology was absolutely clear when semiadherent or suspension cells were used in this multistep experimental procedure. The technology also was evaluated for the cell viability assay and generated similar results to conventional plate format while enabling significant reduction in toxic reagent use. Finally, we developed a DropArray cell-based assay to evaluate a bispecific antibody designed to engage cytotoxic T cells and trigger tumor cell killing. This assay enables for the first time the visualization and quantification of the specific killing events and represents a very powerful tool to further investigate functional aspects of the cancer immunotherapy.


Subject(s)
Cytological Techniques/methods , Animals , Antibodies, Bispecific , B-Lymphocytes/immunology , COS Cells , Cell Line , Cell Survival , Chlorocebus aethiops , Cytological Techniques/instrumentation , Cytotoxicity Tests, Immunologic/instrumentation , Cytotoxicity Tests, Immunologic/methods , HEK293 Cells , High-Throughput Screening Assays/instrumentation , High-Throughput Screening Assays/methods , Humans , Immunotherapy , K562 Cells , Lymphocyte Activation , Neoplasms/immunology , Neoplasms/therapy , Protein Binding , T-Lymphocytes, Cytotoxic/immunology , U937 Cells
19.
Cancer Res ; 72(22): 5812-23, 2012 Nov 15.
Article in English | MEDLINE | ID: mdl-23139210

ABSTRACT

Breast cancer has been redefined into three clinically relevant subclasses: (i) estrogen/progesterone receptor positive (ER+/PR+), (ii) HER2/ERRB2 positive, and (iii) those lacking expression of all three markers (triple negative or basal-like). While targeted therapies for ER+/PR+ and HER2+ tumors have revolutionized patient treatment and increased lifespan, an urgent need exists for identifying novel targets for triple-negative breast cancers. Here, we used integrative genomic analysis to identify candidate oncogenes in triple-negative breast tumors and assess their function through loss of function screening. Using this approach, we identify lactate dehydrogenase B (LDHB), a component of glycolytic metabolism, as an essential gene in triple-negative breast cancer. Loss of LDHB abrogated cell proliferation in vitro and arrested tumor growth in fully formed tumors in vivo. We find that LDHB and other related glycolysis genes are specifically upregulated in basal-like/triple-negative breast cancers as compared with other subtypes, suggesting that these tumors are distinctly glycolytic. Consistent with this, triple-negative breast cancer cell lines were more dependent on glycolysis for growth than luminal cell lines. Finally, we find that patients with breast cancer and high LDHB expression in their tumors had a poor clinical outcome. While previous studies have focused on the ubiquitous role of LDHA in tumor metabolism and growth, our data reveal that LDHB is upregulated and required only in certain cancer genotypes. These findings suggest that targeting LDHB or other components of lactate metabolism would be of clinical benefit in triple-negative breast cancer.


Subject(s)
Breast Neoplasms/genetics , Lactate Dehydrogenases/genetics , Animals , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Growth Processes/genetics , Cell Line, Tumor , Female , Gene Knockdown Techniques , Humans , Lactate Dehydrogenases/biosynthesis , MCF-7 Cells , Mice , Mice, Nude , Prognosis , Receptor, ErbB-2/metabolism , Receptors, Estrogen/metabolism , Receptors, Progesterone/metabolism , Transplantation, Heterologous
20.
Mol Cell ; 48(6): 888-99, 2012 Dec 28.
Article in English | MEDLINE | ID: mdl-23142077

ABSTRACT

Apoptotic caspase activation mechanisms are well defined, yet inactivation modes remain unclear. The death receptors (DRs), DR4, DR5, and Fas, transduce cell-extrinsic apoptotic signals by recruiting caspase-8 into a death-inducing signaling complex (DISC). At the DISC, Cullin3-dependent polyubiquitination on the small catalytic subunit of caspase-8 augments stimulation. Here we report that tumor necrosis factor receptor-associated factor 2 (TRAF2) interacts with caspase-8 at the DISC, downstream of Cullin3. TRAF2 directly mediates RING-dependent, K48-linked polyubiquitination on the large catalytic domain of caspase-8. This modification destines activated caspase-8 molecules to rapid proteasomal degradation upon autoprocessing and cytoplasmic translocation. TRAF2 depletion lowers the signal threshold for DR-mediated apoptosis, altering cell life versus death decisions in vitro and in vivo. Thus, TRAF2 sets a critical barrier for cell-extrinsic apoptosis commitment by tagging activated caspase-8 with a K48-ubiquitin shutoff timer. These results may have important implications for caspase regulation mechanisms.


Subject(s)
Apoptosis , Caspase 8/metabolism , Protein Processing, Post-Translational , Proteolysis , TNF Receptor-Associated Factor 2/physiology , Amino Acid Sequence , Animals , Catalytic Domain , Cell Survival , Cullin Proteins/metabolism , Death Domain Receptor Signaling Adaptor Proteins/metabolism , Enzyme Activation , HCT116 Cells , Humans , Leupeptins/pharmacology , Mice , Mice, Inbred C57BL , Mice, Knockout , Molecular Sequence Data , Peptide Mapping , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors/pharmacology , TNF Receptor-Associated Factor 2/genetics , TNF Receptor-Associated Factor 2/metabolism , Ubiquitination
SELECTION OF CITATIONS
SEARCH DETAIL
...