Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.592
Filter
1.
Pharmaceutics ; 16(6)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38931917

ABSTRACT

In the past several decades, polymeric microparticles (MPs) have emerged as viable solutions to address the limitations of standard pharmaceuticals and their corresponding delivery methods. While there are many preclinical studies that utilize polymeric MPs as a delivery vehicle, there are limited FDA-approved products. One potential barrier to the clinical translation of these technologies is a lack of understanding with regard to the manufacturing process, hindering batch scale-up. To address this knowledge gap, we sought to first identify critical processing parameters in the manufacturing process of blank (no therapeutic drug) and protein-loaded double-emulsion poly(lactic-co-glycolic) acid MPs through a quality by design approach. We then utilized the design of experiments as a tool to systematically investigate the impact of these parameters on critical quality attributes (e.g., size, surface morphology, release kinetics, inner occlusion size, etc.) of blank and protein-loaded MPs. Our results elucidate that some of the most significant CPPs impacting many CQAs of double-emulsion MPs are those within the primary or single-emulsion process (e.g., inner aqueous phase volume, solvent volume, etc.) and their interactions. Furthermore, our results indicate that microparticle internal structure (e.g., inner occlusion size, interconnectivity, etc.) can heavily influence protein release kinetics from double-emulsion MPs, suggesting it is a crucial CQA to understand. Altogether, this study identifies several important considerations in the manufacturing and characterization of double-emulsion MPs, potentially enhancing their translation.

2.
Invest Ophthalmol Vis Sci ; 65(6): 39, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38935032

ABSTRACT

Purpose: This study aimed to explore protective effects and potential mechanism of ectoine, a natural osmoprotectant, on ocular surface mucin production in dry eye disease. Methods: A dry eye model was established in C57BL/6 mice exposed to desiccating stress (DS) with untreated (UT) mice as controls. DS mice were topically treated with 2.0% ectoine or PBS vehicle. Corneal epithelial defects were assessed by Oregon Green Dextran (OGD) fluorescent staining. Conjunctival goblet cells, ocular mucins, and T help (Th) cytokines were evaluated by immunofluorescent staining or ELISA, and RT-qPCR. Results: Compared with UT mice, corneal epithelial defects were detected as strong punctate OGD fluorescent staining in DS mice with vehicle, whereas ectoine treatment largely reduced OGD staining to near-normal levels. Conjunctival goblet cell density and cell size decreased markedly in DS mice, but was significantly recovered by ectoine treatment. The protein production and mRNA expression of two gel-forming secreted MUC5AC and MUC2, and 4 transmembrane mucins, MUC1, MUC4, MUC16, and MUC15, largely decreased in DS mice, but was restored by ectoine. Furthermore, Th2 cytokine IL-13 was inhibited, whereas Th1 cytokine IFN-γ was stimulated at protein and mRNA levels in conjunctiva and draining cervical lymph nodes (CLNs) of DS mice, leading to decreased IL-13/IFN-γ ratio. Interestingly, 2.0% ectoine reversed their alternations and restored IL-13/IFN-γ balance. Conclusions: Our findings demonstrate that topical ectoine significantly reduces corneal damage, and enhances goblet cell density and mucin production through restoring imbalanced IL-13/IFN-γ signaling in murine dry eye model. This suggests therapeutic potential of natural osmoprotectant ectoine for dry eye disease.


Subject(s)
Disease Models, Animal , Dry Eye Syndromes , Goblet Cells , Interferon-gamma , Interleukin-13 , Mice, Inbred C57BL , Mucins , Animals , Dry Eye Syndromes/metabolism , Dry Eye Syndromes/drug therapy , Mice , Goblet Cells/metabolism , Goblet Cells/drug effects , Goblet Cells/pathology , Interferon-gamma/metabolism , Mucins/metabolism , Mucins/biosynthesis , Mucins/genetics , Interleukin-13/metabolism , Conjunctiva/metabolism , Conjunctiva/drug effects , Conjunctiva/pathology , Enzyme-Linked Immunosorbent Assay , Female , Epithelium, Corneal/metabolism , Epithelium, Corneal/drug effects , Real-Time Polymerase Chain Reaction , RNA, Messenger/genetics , RNA, Messenger/metabolism , Amino Acids, Diamino
3.
Article in English | MEDLINE | ID: mdl-38940184

ABSTRACT

OBJECTIVE: To assess the uptake of a multidisciplinary team approach in obstetric disseminated intravascular coagulopathy (DIC) management in a low- to middle-income country. METHODS: A cross-sectional observational study, in which a semi-structured and pre-tested questionnaire was used to collect data on the uptake by Nigerian obstetricians of the multidisciplinary team approach to obstetric DIC management. RESULTS: A total of 171 obstetricians responded, 82 (48.0%) were consultants and 89 (52.0%) were specialist registrars. Most (165; 96.5%) practiced in tertiary healthcare facilities and the multidisciplinary team approach was the most preferred (162; 94.7%) management approach. In all, 142 (83.0%) supported the invitation of hematologists always in the management whereas 115 (67.3%) participants recommended that involvement of specialists in the treatment should be when clinical presentation was suggestive of DIC. No significant association existed between years of obstetric practice and adoption of a multidisciplinary team-based approach (χ2 = 9.590; P = 0.252). CONCLUSION: A multidisciplinary approach is widely adopted in the management of obstetric DIC, with hematologists being a key member of the team.

4.
Nanoscale ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38940744

ABSTRACT

Model membranes allow for structural and biophysical studies on membrane biochemistry at the molecular level, albeit on systems of reduced complexity which can limit biological accuracy. Floating supported bilayers offer a means of producing planar lipid membrane models not adhered to a surface, which allows for improved accuracy compared to other model membranes. Here we communicate the incorporation of an integral membrane protein complex, the multidomain ß-barrel assembly machinery (Bam), into our recently developed in situ self-assembled floating supported bilayers. Using neutron reflectometry and quartz crystal microbalance measurements we show this sample system can be fabricated using a two-step self-assembly process. We then demonstrate the complexity of the model membrane and tuneability of the membrane-to-surface distance using changes in the salt concentration of the bulk solution. Results demonstrate an easily fabricated, biologically accurate and tuneable membrane assay system which can be utilized for studies on integral membrane proteins within their native lipid matrix.

5.
Curr Biol ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38936364

ABSTRACT

Escape behavior is a set of locomotor actions that move an animal away from threat. While these actions can be stereotyped, it is advantageous for survival that they are flexible.1,2,3 For example, escape probability depends on predation risk and competing motivations,4,5,6,7,8,9,10,11 and flight to safety requires continuous adjustments of trajectory and must terminate at the appropriate place and time.12,13,14,15,16 This degree of flexibility suggests that modulatory components, like inhibitory networks, act on the neural circuits controlling instinctive escape.17,18,19,20,21,22 In mice, the decision to escape from imminent threats is implemented by a feedforward circuit in the midbrain, where excitatory vesicular glutamate transporter 2-positive (VGluT2+) neurons in the dorsal periaqueductal gray (dPAG) compute escape initiation and escape vigor.23,24,25 Here we tested the hypothesis that local GABAergic neurons within the dPAG control escape behavior by setting the excitability of the dPAG escape network. Using in vitro patch-clamp and in vivo neural activity recordings, we found that vesicular GABA transporter-positive (VGAT+) dPAG neurons fire action potentials tonically in the absence of synaptic inputs and are a major source of inhibition to VGluT2+ dPAG neurons. Activity in VGAT+ dPAG cells transiently decreases at escape onset and increases during escape, peaking at escape termination. Optogenetically increasing or decreasing VGAT+ dPAG activity changes the probability of escape when the stimulation is delivered at threat onset and the duration of escape when delivered after escape initiation. We conclude that the activity of tonically firing VGAT+ dPAG neurons sets a threshold for escape initiation and controls the execution of the flight action.

6.
PLoS One ; 19(6): e0305398, 2024.
Article in English | MEDLINE | ID: mdl-38917117

ABSTRACT

The Arctic faces increasing exposure to environmental chemicals such as metals, posing health risks to humans and wildlife. Biomonitoring of polar bears (Ursus maritimus) can be used to quantify chemicals in the environment and in traditional foods consumed by the Inuit. However, typically, these samples are collected through invasive or terminal methods. The biomonitoring of feces could be a useful alternative to the current metal monitoring method within the Arctic. Here, we aim to 1) quantify the relationship between concentrations of metals in the feces and tissues (muscle, liver, and fat) of polar bears using predictive modeling, 2) develop an easy-to-use conversion tool for use in community-based monitoring programs to non-invasively estimate contaminant concentrations in polar bears tissues and 3) demonstrate the application of these models by examining potential exposure risk for humans from consumption of polar bear muscle. Fecal, muscle, liver, and fat samples were harvested from 49 polar bears through a community-based monitoring program. The samples were analyzed for 32 metals. Exploratory analysis indicated that mean metal concentrations generally did not vary by age or sex, and many of the metals measured in feces were positively correlated with the internal tissue concentration. We developed predictive linear regression models between internal (muscle, liver, fat) and external (feces) metal concentrations and further explored the mercury and methylmercury relationships for utility risk screening. Using the cross-validated regression coefficients, we developed a conversion tool that contributes to the One Health approach by understanding the interrelated health of humans, wildlife, and the environment in the Arctic. The findings support using feces as a biomonitoring tool for assessing contaminants in polar bears. Further research is needed to validate the developed models for other regions in the Arctic and assess the impact of environmental weathering on fecal metal concentrations.


Subject(s)
Feces , Ursidae , Feces/chemistry , Animals , Female , Male , Arctic Regions , Metals/analysis , Biological Monitoring/methods , Food Contamination/analysis , Humans , Environmental Monitoring/methods , Environmental Pollutants/analysis , Liver/chemistry , Liver/metabolism
8.
bioRxiv ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38895229

ABSTRACT

Interleukin-7 (IL-7) is considered a critical regulator of memory CD8+ T cell homeostasis, but this is primarily based on analysis of circulating and not tissue-resident memory (TRM) subsets. Furthermore, the cell-intrinsic requirement for IL-7 signaling during memory homeostasis has not been directly tested. Using inducible deletion, we found that Il7ra loss had only a modest effect on persistence of circulating memory and TRM subsets and that IL-7Rα was primarily required for normal basal proliferation. Loss of IL-15 signaling imposed heightened IL-7Rα dependence on memory CD8+ T cells, including TRM populations previously described as IL-15-independent. In the absence of IL-15 signaling, IL-7Rα was upregulated, and loss of IL-7Rα signaling reduced proliferation in response to IL-15, suggesting cross-regulation in memory CD8+ T cells. Thus, across subsets and tissues, IL-7 and IL-15 act in concert to support memory CD8+ T cells, conferring resilience to altered availability of either cytokine.

9.
Children (Basel) ; 11(6)2024 May 22.
Article in English | MEDLINE | ID: mdl-38929199

ABSTRACT

Pain is common in paediatric populations and is best treated with a multi-disciplinary approach. Art therapy interventions are gaining popularity in paediatrics; however, there is limited evidence on its impact on pain outcomes in children and adolescents. The objective of this scoping review is to map current research on art therapy's impact as an intervention in paediatric populations experiencing any type of pain (i.e., acute, recurrent, and chronic). Electronic searches were conducted by a medical librarian to identify studies that used art therapy interventions in paediatric populations with pain as an outcome measure. Four reviewers independently screened and selected articles for extraction using Covidence and data were extracted from articles using study objectives. There were five studies that met the inclusion criteria. Four of the five studies reported on pain intensity and all studies reported on emotional functioning. Findings suggest art therapy interventions can be helpful for reducing pain, anxiety, stress, and fear associated with treatment. Further, there is emerging evidence that art therapy can support the management of acute and procedural pain in children. Future research should examine the impacts of integrating art therapy interventions into the multidisciplinary management of paediatric pain.

10.
Biomedicines ; 12(6)2024 May 30.
Article in English | MEDLINE | ID: mdl-38927426

ABSTRACT

PURPOSE: A temporal reduction in the cardiovascular autonomic responses predisposes patients to cardiovascular instability after a viral infection and therefore increases the risk of associated complications. These findings have not been replicated in a bacterial infection. This pilot study will explore the prevalence of cardiovascular autonomic dysfunction (CAD) in hospitalized patients with a bacterial infection. METHODS: A longitudinal observational pilot study was conducted. Fifty participants were included: 13 and 37 participants in the infection group and healthy group, respectively. Recruitment and data collection were carried out during a two-year period. Participants were followed up for 6 weeks: all participants' cardiovascular function was assessed at baseline (week 1) and reassessed subsequently at week 6 so that the progression of the autonomic function could be evaluated over that period of time. The collected data were thereafter analyzed using STATA/SE version 16.1 (StataCorp). The Fisher Exact test, McNemar exact test, Mann-Whitney test and Wilcoxon test were used for data analysis. RESULTS: 32.4% of the participants in the healthy group were males (n = 12) and 67.6% were females (n = 25). Participants' age ranged from 33 years old to 76 years old with the majority being 40-60 years of age (62.1%) (Mean age 52.4 SD = 11.4). Heart rate variability (HRV) in response to Valsalva Maneuver, metronome breathing, standing and sustained handgrip in the infection group was lower than in the healthy group throughout the weeks. Moreover, both the HRV in response to metronome breathing and standing up showed a statistically significant difference when the mean values were compared between both groups in week 1 (p = 0.03 and p = 0.013). The prevalence of CAD was significantly higher in the infection group compared to healthy volunteers, both at the beginning of the study (p = 0.018) and at the end of follow up (p = 0.057), when all patients had been discharged. CONCLUSIONS: CAD, as assessed by the HRV, is a common finding during the recovery period of a bacterial infection, even after 6 weeks post-hospital admission. This may increase the risk of complications and cardiovascular instability. It may therefore be of value to conduct a wider scale study to further evaluate this aspect so recommendations can be made for the cardiovascular autonomic assessment of patients while they are recovering from a bacterial infectious process.

11.
J Med Chem ; 67(12): 9950-9975, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38865195

ABSTRACT

To improve their aqueous solubility characteristics, water-solubilizing groups were added to some antiproliferative, rigidin-inspired 7-deazahypoxanthine frameworks after molecular modeling seemed to indicate that structural modifications on the C7 and/or C8 phenyl groups would be beneficial. To this end, two sets of 7-deazahypoxanthines were synthesized by way of a multicomponent reaction approach. It was subsequently determined that their antiproliferative activity against HeLa cells was retained for those derivatives with a glycol ether at the 4'-position of the C8 aryl ring system, while also significantly improving their solubility behavior. The best of these compounds were the equipotent 6-[4-(2-ethoxyethoxy)benzoyl]-2-(pent-4-yn-1-yl)-5-phenyl-1,7-dihydro-4H-pyrrolo[2,3-d]pyrimidin-4-one 33 and 6-[4-(2-ethoxyethoxy)benzoyl]-5-(3-fluorophenyl)-2-(pent-4-yn-1-yl)-1,7-dihydro-4H-pyrrolo[2,3-d]pyrimidin-4-one 59. Similarly to the parent 1, the new derivatives were also potent inhibitors of tubulin assembly. In treated HeLa cells, live cell confocal microscopy demonstrated their impact on microtubulin dynamics and spindle morphology, which is the upstream trigger of mitotic delay and cell death.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Humans , HeLa Cells , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Cell Proliferation/drug effects , Structure-Activity Relationship , Drug Screening Assays, Antitumor , Solubility , Models, Molecular , Tubulin/metabolism
12.
J Spec Oper Med ; 24(2): 67-71, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38865655

ABSTRACT

BACKGROUND: Medical training and evaluation are important for mission readiness in the pararescue career field. Because evaluation methods are not standardized, evaluation methods must align with training objectives. We propose an alternative evaluation method and discuss relevant factors when designing military medical evaluation metrics. METHODS: We compared two evaluation methods, the traditional checklist (TC) method used in the pararescue apprentice course and an alternative weighted checklist (AWC) method like that used at the U.S. Army static line jumpmaster course. The AWC allows up to two minor errors, while critical task errors result in autofailure. We recorded 168 medical scenarios during two Apprentice course classes and retroactively compared the two evaluation methods. RESULTS: Despite the possibility of auto-failure with the AWC, there was no significant difference between the two evaluation methods, and both showed similar overall pass rates (TC=50% pass, AWC=48.8% pass, p=.41). The two evaluation methods yielded the same result for 147 out of 168 scenarios (87.5%). CONCLUSIONS: The AWC method strongly emphasizes critical tasks without significantly increasing failures. It may provide additional benefits by being more closely aligned with our training objectives while providing quantifiable data for a longitudinal review of student performance.


Subject(s)
Checklist , Military Medicine , Military Personnel , Humans , Educational Measurement/methods , Clinical Competence
14.
Glob Chang Biol ; 30(6): e17356, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38853470

ABSTRACT

Seasonally abundant arthropods are a crucial food source for many migratory birds that breed in the Arctic. In cold environments, the growth and emergence of arthropods are particularly tied to temperature. Thus, the phenology of arthropods is anticipated to undergo a rapid change in response to a warming climate, potentially leading to a trophic mismatch between migratory insectivorous birds and their prey. Using data from 19 sites spanning a wide temperature gradient from the Subarctic to the High Arctic, we investigated the effects of temperature on the phenology and biomass of arthropods available to shorebirds during their short breeding season at high latitudes. We hypothesized that prolonged exposure to warmer summer temperatures would generate earlier peaks in arthropod biomass, as well as higher peak and seasonal biomass. Across the temperature gradient encompassed by our study sites (>10°C in average summer temperatures), we found a 3-day shift in average peak date for every increment of 80 cumulative thawing degree-days. Interestingly, we found a linear relationship between temperature and arthropod biomass only below temperature thresholds. Higher temperatures were associated with higher peak and seasonal biomass below 106 and 177 cumulative thawing degree-days, respectively, between June 5 and July 15. Beyond these thresholds, no relationship was observed between temperature and arthropod biomass. Our results suggest that prolonged exposure to elevated temperatures can positively influence prey availability for some arctic birds. This positive effect could, in part, stem from changes in arthropod assemblages and may reduce the risk of trophic mismatch.


Subject(s)
Arthropods , Biomass , Seasons , Temperature , Animals , Arctic Regions , Arthropods/physiology , Climate Change , Food Chain , Charadriiformes/physiology , Animal Migration
16.
medRxiv ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38853937

ABSTRACT

Repetitive transcranial magnetic stimulation (rTMS) therapy could be improved by better and earlier prediction of response. Latent class mixture (LCMM) and non-linear mixed effects (NLME) modelling have been applied to model the trajectories of antidepressant response (or non-response) to TMS, but it is not known whether such models can predict clinical outcomes. We compared LCMM and NLME approaches to model the antidepressant response to TMS in a naturalistic sample of 238 patients receiving rTMS for treatment resistant depression (TRD), across multiple coils and protocols. We then compared the predictive power of those models. LCMM trajectories were influenced largely by baseline symptom severity, but baseline symptoms provided little predictive power for later antidepressant response. Rather, the optimal LCMM model was a nonlinear two-class model that accounted for baseline symptoms. This model accurately predicted patient response at 4 weeks of treatment (AUC = 0.70, 95% CI = [0.52-0.87]), but not before. NLME offered slightly improved predictive performance at 4 weeks of treatment (AUC = 0.76, 95% CI = [0.58 - 0.94], but likewise, not before. In showing the predictive validity of these approaches to model response trajectories to rTMS, we provided preliminary evidence that trajectory modeling could be used to guide future treatment decisions.

17.
J Neurosurg Case Lessons ; 7(24)2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38857545

ABSTRACT

BACKGROUND: Essential tremor (ET) is one of the most common movement disorders worldwide. In medically refractory ET, deep brain stimulation (DBS) of the ventral intermediate nucleus of the thalamus is the current standard of care. However, DBS carries an inherent 2% to 3% risk of hemorrhage, a risk that can be much higher in patients with concomitant coagulopathy. Magnetic resonance imaging-guided focused ultrasound (MRgFUS) thalamotomy is a surgical alternative that is highly effective in treating ET, with no reports of intracranial hemorrhage to date. OBSERVATIONS: This is the first documented case of successful MRgFUS thalamotomy in a patient with von Willebrand disease (VWD). A 60-year-old left-handed male had medically refractory ET, VWD type 2B, and a family history of clinically significant hemorrhage after DBS. He underwent right-sided MRgFUS thalamotomy and received a perioperative course of VONVENDI (recombinant von Willebrand factor) to ensure appropriate hemostasis. Postprocedure imaging confirmed a focal lesion in the right thalamus without evidence of hemorrhage. The patient reported 90% improvement of his left-hand tremor and significant improvement in his quality of life without obvious side effects. LESSONS: MRgFUS thalamotomy with peri- and postoperative hematological management is a promising alternative to DBS for patients with underlying coagulopathies.

18.
Diabetes Metab Syndr Obes ; 17: 2419-2456, 2024.
Article in English | MEDLINE | ID: mdl-38894706

ABSTRACT

In healthy humans, the complex biochemical interplay between organs maintains metabolic homeostasis and pathological alterations in this process result in impaired metabolic homeostasis, causing metabolic diseases such as diabetes and obesity, which are major global healthcare burdens. The great advancements made during the last century in understanding both metabolic disease phenotypes and the regulation of metabolic homeostasis in healthy individuals have yielded new therapeutic options for diseases like type 2 diabetes (T2D). However, it is unlikely that highly desirable more efficacious treatments will be developed for metabolic disorders until the complex systemic regulation of metabolic homeostasis becomes more intricately understood. Hormones produced by pancreatic islet beta-cells (insulin) and alpha-cells (glucagon) are pivotal for maintaining metabolic homeostasis; the activity of insulin and glucagon are reciprocally correlated to achieve strict control of glucose levels (normoglycaemia). Metabolic hormones produced by other pancreatic islet cells and incretins produced by the gut are also crucial for maintaining metabolic homeostasis. Recent studies highlighted the incomplete understanding of metabolic hormonal synergism and, therefore, further elucidation of this will likely lead to more efficacious treatments for diseases such as T2D. The objective of this review is to summarise the systemic actions of the incretins and the metabolic hormones produced by the pancreatic islets and their interactions with their respective receptors.

19.
Nat Commun ; 15(1): 5191, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890283

ABSTRACT

A recent clinical trial demonstrated that Bacille Calmette-Guérin (BCG) revaccination of adolescents reduced the risk of sustained infection with Mycobacterium tuberculosis (M.tb). In a companion phase 1b trial, HVTN 602/Aeras A-042, we characterize in-depth the cellular responses to BCG revaccination or to a H4:IC31 vaccine boost to identify T cell subsets that could be responsible for the protection observed. High-dimensional clustering analysis of cells profiled using a 26-color flow cytometric panel show marked increases in five effector memory CD4+ T cell subpopulations (TEM) after BCG revaccination, two of which are highly polyfunctional. CITE-Seq single-cell analysis shows that the activated subsets include an abundant cluster of Th1 cells with migratory potential. Additionally, a small cluster of Th17 TEM cells induced by BCG revaccination expresses high levels of CD103; these may represent recirculating tissue-resident memory cells that could provide pulmonary immune protection. Together, these results identify unique populations of CD4+ T cells with potential to be immune correlates of protection conferred by BCG revaccination.


Subject(s)
BCG Vaccine , CD4-Positive T-Lymphocytes , Mycobacterium tuberculosis , Mycobacterium tuberculosis/immunology , Humans , Adolescent , CD4-Positive T-Lymphocytes/immunology , BCG Vaccine/immunology , Immunization, Secondary , Tuberculosis/immunology , Tuberculosis/prevention & control , Tuberculosis/microbiology , Female , Male , Phenotype , Single-Cell Analysis , Th1 Cells/immunology , Immunologic Memory/immunology
20.
Thorax ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38906696

ABSTRACT

INTRODUCTION: Given the heterogeneity of sarcoidosis, predicting disease course of patients remains a challenge. Our aim was to determine whether the 3-year change in pulmonary function differed between pulmonary function phenotypes and whether there were differential longitudinal changes by race and sex. METHODS: We identified individuals seen between 2005 and 2015 with a confirmed diagnosis of sarcoidosis who had at least two pulmonary function test measurements within 3 years of entry into the cohort. For each individual, spirometry, diffusion capacity, Charlson Comorbidity Index, sarcoidosis organ involvement, diagnosis duration, tobacco use, race, sex, age and medications were recorded. We compared changes in pulmonary function by type of pulmonary function phenotype and for demographic groups. RESULTS: Of 291 individuals, 59% (173) were female and 54% (156) were black. Individuals with restrictive pulmonary function phenotype had significantly greater 3-year rate of decline of FVC% (forced vital capacity) predicted and FEV1% (forced expiratory volume in 1 s) predicted course when compared with normal phenotype. We identified a subset of individuals in the cohort, highest decliners, who had a median 3-year FVC decline of 156 mL. Black individuals had worse pulmonary function at entry into the cohort measured by FVC% predicted, FEV1% predicted and diffusing capacity for carbon monoxide % predicted compared with white individuals. Black individuals' pulmonary function remained stable or declined over time, whereas white individuals' pulmonary function improved over time. There were no sex differences in rate of change in any pulmonary function parameters. SUMMARY: We found significant differences in 3-year change in pulmonary function among pulmonary function phenotypes and races, but no difference between sexes.

SELECTION OF CITATIONS
SEARCH DETAIL
...