Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(5)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38473637

ABSTRACT

In this paper, the influences of two post-heat treatments on the structural, mechanical and corrosion resistance properties of additively manufactured Ti6Al4V alloys were discussed in detail. The materials were produced using the laser engineering net shaping (LENS) technique, and they were subjected to annealing without pressure and hot isostatic pressing (HIP) under a pressure of 300 MPa for 30 min at temperatures of 950 °C and 1050 °C. Annealing without pressure led to the formation of a thin plate structure, which was accompanied by decreasing mechanical properties and increasing elongation and corrosion resistance values. For the HIP process, the formation of a thick plate structure could be observed, resulting in the material exhibiting optimal mechanical properties and unusually high elongation. The best mechanical and corrosion resistance properties were obtained for the material subjected to HIP at 950 °C.

2.
Materials (Basel) ; 16(5)2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36903080

ABSTRACT

Samples of 316L SS were manufactured by Laser Engineered Net Shaping (LENS®) using different technological parameters. The deposited samples were investigated in terms of microstructure, mechanical properties, phase content and corrosion resistance (salt chamber and electrochemical corrosion). Parameters were chosen to obtain a proper sample built for layer thicknesses of 0.2, 0.4 and 0.7 mm by changing the laser feed rate while keeping the powder feed rate constant. After a comprehensive analysis of the results, it was found that the manufacturing parameters slightly affected the resulting microstructure and also had a minor impact (almost undetectable considering the uncertainty of the measurement) on the mechanical properties of samples. Decreases in resistance to electrochemical pitting corrosion and environmental corrosion with an increased feed rate and a decrease in layer thickness and grain size were observed; however, all additively manufactured samples were found to be less prone to corrosion than the reference material. In the investigated processing window, no influence of deposition parameters on the phase content of the final product was found-all the samples were found to possess austenitic microstructure with almost no detectable ferrite.

3.
Materials (Basel) ; 15(11)2022 Jun 02.
Article in English | MEDLINE | ID: mdl-35683258

ABSTRACT

Herein, we report a feasible method for forming barrel-like hybrid Cu(OH)2-ZnO structures on α-brass substrate via low-potential electro-oxidation in 1 M NaOH solution. The presented study was conducted to investigate the electrochemical behavior of CuZn in a passive range (-0.2 V-0.5 V) and its morphological changes that occur under these conditions. As found, morphology and phase composition of the grown layer strongly depend on the applied potential, and those material characteristics can be tuned by varying the operating conditions. To the best of our knowledge, the yielded morphology of barrel-like structure has not been previously observed for brass anodizing. Additionally, photoactivity under both UV and daylight irradiation-induced degradation of organic dye (methyl orange) using Cu(OH)2-ZnO composite was explored. Obtained results proved photocatalytic activity of the material that led to degradation of 43% and 36% of the compound in UV and visible light, respectively. The role of Cu(OH)2 in improving ZnO photoactivity was recognized and discussed. As implied by both the undertaken research and the literature on the subject, cupric hydroxide can act as a trap for photoexcited electrons, and thus contributes to stabilizing electron-hole recombination. This resulted in improved light-absorbing properties of the photoactive component, ZnO.

4.
Molecules ; 26(21)2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34770787

ABSTRACT

Anodic oxidation of metals leads to the formation of ordered nanoporous or nanotubular oxide layers that contribute to numerous existing and emerging applications. However, there are still numerous fundamental aspects of anodizing that have to be well understood and require deeper understanding. Anodization of metals is accompanied by the inevitable phenomenon of anion incorporation, which is discussed in detail in this review. Additionally, the influence of anion incorporation into anodic alumina and its impact on various properties is elaborated. The literature reports on the impact of the incorporated electrolyte anions on photoluminescence, galvanoluminescence and refractive index of anodic alumina are analyzed. Additionally, the influence of the type and amount of the incorporated anions on the chemical properties of anodic alumina, based on the literature data, was also shown to be important. The role of fluoride anions in d-electronic metal anodizing is shown to be important in the formation of nanostructured morphology. Additionally, the impact of incorporated anionic species, such as ruthenites, and their influence on anodic oxides formation, such as titania, reveals how the phenomenon of anion incorporation can be beneficial.

5.
Nanomaterials (Basel) ; 8(6)2018 May 29.
Article in English | MEDLINE | ID: mdl-29844274

ABSTRACT

Typically, anodic oxidation of metals results in the formation of hexagonally arranged nanoporous or nanotubular oxide, with a specific oxidation state of the transition metal. Recently, the majority of transition metals have been anodized; however, the formation of copper oxides by electrochemical oxidation is yet unexplored and offers numerous, unique properties and applications. Nanowires formed by copper electrochemical oxidation are crystalline and composed of cuprous (CuO) or cupric oxide (Cu2O), bringing varied physical and chemical properties to the nanostructured morphology and different band gaps: 1.44 and 2.22 eV, respectively. According to its Pourbaix (potential-pH) diagram, the passivity of copper occurs at ambient and alkaline pH. In order to grow oxide nanostructures on copper, alkaline electrolytes like NaOH and KOH are used. To date, no systemic study has yet been reported on the influence of the operating conditions, such as the type of electrolyte, its temperature, and applied potential, on the morphology of the grown nanostructures. However, the numerous reports gathered in this paper will provide a certain view on the matter. After passivation, the formed nanostructures can be also post-treated. Post-treatments employ calcinations or chemical reactions, including the chemical reduction of the grown oxides. Nanostructures made of CuO or Cu2O have a broad range of potential applications. On one hand, with the use of surface morphology, the wetting contact angle is tuned. On the other hand, the chemical composition (pure Cu2O) and high surface area make such materials attractive for renewable energy harvesting, including water splitting. While compared to other fabrication techniques, self-organized anodization is a facile, easy to scale-up, time-efficient approach, providing high-aspect ratio one-dimensional (1D) nanostructures. Despite these advantages, there are still numerous challenges that have to be faced, including the strict control of the chemical composition and morphology of the grown nanostructures, their uniformity, and understanding the mechanism of their growth.

6.
Materials (Basel) ; 11(4)2018 Apr 18.
Article in English | MEDLINE | ID: mdl-29669997

ABSTRACT

Iron aluminides are intermetallics with interesting applications in porous form thanks to their mechanical and corrosion resistance properties. However, making porous forms of these materials is not easy due to their high melting points. We formed FeAl foams by elemental iron and aluminum powders sintering with tartaric acid additive. Tartaric acid worked as an in situ gas-releasing agent during the self-propagating high-temperature synthesis of FeAl intermetallic alloy, which was confirmed by X-ray diffraction measurements. The porosity of the formed foams was up to 36 ± 4%. In the core of the sample, the average equivalent circle diameter was found to be 47 ± 20 µm, while on the surface, it was 35 ± 16 µm; thus, the spread of the pore size was smaller than reported previously. To investigate functional applications of the formed FeAl foam, the pressure drop of air during penetration of the foam was examined. It was found that increased porosity of the material increased the flow of the air through the metallic foam.

7.
Materials (Basel) ; 10(7)2017 Jul 04.
Article in English | MEDLINE | ID: mdl-28773106

ABSTRACT

Fabrication of metallic foams by sintering metal powders mixed with thermally degradable compounds is of interest for numerous applications. Compounds releasing gaseous nitrogen, minimizing interactions between the formed gases and metallic foam by diluting other combustion products, were applied. Cysteine and phenylalanine, were used as gas releasing agents during the sintering of elemental Fe and Al powders in order to obtain metallic foams. Characterization was carried out by optical microscopy with image analysis, scanning electron microscopy with energy dispersive spectroscopy, and gas permeability tests. Porosity of the foams was up to 42 ± 3% and 46 ± 2% for sintering conducted with 5 wt % cysteine and phenylalanine, respectively. Chemical analyses of the formed foams revealed that the oxygen content was below 0.14 wt % and the carbon content was below 0.3 wt %. Therefore, no brittle phases could be formed that would spoil the mechanical stability of the FeAl intermetallic foams. The gas permeability tests revealed that only the foams formed in the presence of cysteine have enough interconnections between the pores, thanks to the improved air flow through the porous materials. The foams formed with cysteine can be applied as filters and industrial catalysts.

8.
Materials (Basel) ; 7(10): 7039-7047, 2014 Oct 17.
Article in English | MEDLINE | ID: mdl-28788230

ABSTRACT

Micro-grained thin foils made of Ni3Al intermetallic alloy were fabricated, according to a previously described procedure, and tested as catalyst for decomposition of cyclohexane. The conversion efficiency of the catalyst was evaluated in a synthetic air atmosphere, and found to be as high as 98.7% ± 1.0% at 600 °C and 86.7% ± 3.6% at 500 °C. During the reaction, the growth of carbon nanofibers on the catalysts surface was observed. The chemical and phase composition of the nanofibers was investigated with scanning electron microscopy (SEM), energy dispersive spectrometry (EDS) and X-ray diffraction (XRD), finding them to be made of graphitic carbon. Additionally, nanoparticles of nickel appear to be incorporated in the fibers. The obtained material is promising for large scale fabrication in industrial applications because of its high efficiency in the hydrocarbon decomposition, the simple fabrication procedure, and the form of self-supporting foils with the presence of additional carbon nanofibers that increase its efficiency.

SELECTION OF CITATIONS
SEARCH DETAIL
...