Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 146(13): 8961-8970, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38428926

ABSTRACT

The chemistry of metal-organic frameworks (MOFs) continues to expand rapidly, providing materials with diverse structures and properties. The reticular chemistry approach, where well-defined structural building blocks are combined together to form crystalline open framework solids, has greatly accelerated the discovery of new and important materials. However, its full potential toward the rational design of MOFs relies on the availability of highly connected building blocks because these greatly reduce the number of possible structures. Toward this, building blocks with connectivity greater than 12 are highly desirable but extremely rare. We report here the discovery of novel 18-connected, trigonal prismatic, ternary building blocks (tbb's) and their assembly into unique MOFs, denoted as Fe-tbb-MOF-x (x: 1, 2, 3), with hierarchical micro- and mesoporosity. The remarkable tbb is an 18-c supertrigonal prism, with three points of extension at each corner, consisting of triangular (3-c) and rectangular (4-c) carboxylate-based organic linkers and trigonal prismatic [Fe3(µ3-Ο)(-COO)6]+ clusters. The tbb's are linked together by an 18-c cluster made of 4-c ligands and a crystallographically distinct Fe3(µ3-Ο) trimer, forming overall a 3-D (3,4,4,6,6)-c five nodal net. The hierarchical, highly porous nature of Fe-tbb-MOF-x (x: 1, 2, 3) was confirmed by recording detailed sorption isotherms of Ar, CH4, and CO2 at 87, 112, and 195 K, respectively, revealing an ultrahigh BET area (4263-4847 m2 g-1) and pore volume (1.95-2.29 cm3 g-1). Because of the observed ultrahigh porosities, the H2 and CH4 storage properties of Fe-tbb-MOF-x were investigated, revealing well-balanced high gravimetric and volumetric deliverable capacities for cryoadsorptive H2 storage (11.6 wt %/41.4 g L-1, 77 K/100 bar-160 K/5 bar), as well as CH4 storage at near ambient temperatures (367 mg g-1/160 cm3 STP cm-3, 5-100 bar at 298 K), placing these materials among the top performing MOFs. The present work opens new directions to apply reticular chemistry for the construction of novel MOFs with tunable porosities based on contracted or expanded tbb analogues.

2.
Polymers (Basel) ; 15(23)2023 Nov 23.
Article in English | MEDLINE | ID: mdl-38231946

ABSTRACT

Poly(ethylene 2,5-furandicarboxylate) (PEF)-based nanocomposites containing Ce-bioglass, ZnO, and ZrO2 nanoparticles were synthesized via in situ polymerization, targeting food packaging applications. The nanocomposites were thoroughly characterized, combining a range of techniques. The successful polymerization was confirmed using attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy, and the molecular weight values were determined indirectly by applying intrinsic viscosity measurements. The nanocomposites' structure was investigated by depth profiling using time-of-flight secondary ion mass spectrometry (ToF-SIMS), while color measurements showed a low-to-moderate increase in the color concentration of all the nanocomposites compared to neat PEF. The thermal properties and crystallinity behavior of the synthesized materials were also examined. The neat PEF and PEF-based nanocomposites show a crystalline fraction of 0-5%, and annealed samples of both PEF and PEF-based nanocomposites exhibit a crystallinity above 20%. Furthermore, scanning electron microscopy (SEM) micrographs revealed that active agent nanoparticles are well dispersed in the PEF matrix. Contact angle measurements showed that incorporating nanoparticles into the PEF matrix significantly reduces the wetting angle due to increased roughness and introduction of the polar -OH groups. Antimicrobial studies indicated a significant increase in inhibition of bacterial strains of about 9-22% for Gram-positive bacterial strains and 5-16% for Gram-negative bacterial strains in PEF nanocomposite films, respectively. Finally, nanoindentation tests showed that the ZnO-based nanocomposite exhibits improved hardness and elastic modulus values compared to neat PEF.

3.
Inorg Chem ; 57(12): 7244-7251, 2018 Jun 18.
Article in English | MEDLINE | ID: mdl-29870232

ABSTRACT

The targeted synthesis of metal-organic frameworks (MOFs) with open metal sites, following reticular chemistry rules, provides a straightforward methodology toward the development of advanced porous materials especially for gas storage/separation applications. Using a palladated tetracarboxylate metalloligand as a 4-connected node, we succeeded in synthesizing the first heterobimetallic In(III)/Pd(II)-based MOF with square-octahedron (soc) topology. The new MOF, formulated as [In3O(L)1.5(H2O)2Cl]·n(solv) (1), features the oxo-centered trinuclear clusters, [In3(µ3-O)(-COO)6], acting as trigonal-prismatic 6-connected nodes that linked together with the metalloligand trans-[PdCl2(PDC)2] (L4-) (PDC: pyridine-3,5-dicarboxylate) to form a 3D network. After successful activation of 1 using supercritical CO2, high-resolution microporous analysis revealed the presence of small micropores (5.8 Å) with BET area of 795 m2 g-1 and total pore volume of 0.35 cm3 g-1. The activated solid shows high gravimetric (92.3 cm3 g-1) and volumetric (120.9 cm3 cm-3) CO2 uptake at 273 K and 1 bar as well as high CO2/CH4 (15.4 for a 50:50 molar mixture) and CO2/N2 (131.7 for a 10:90 molar mixture) selectivity, with moderate Qst0 for CO2 (29.8 kJ mol-1). Slight modifications of the synthesis conditions led to the formation of a different MOF with an anionic framework, having a chemical formula [Me2NH2][In(L)]· n(solv) (2). This MOF is constructed from pseudotetrahedral, mononuclear [In(-COO)4] nodes bridged by four L4- linkers, resulting in a 3D network with PtS topology.

4.
ACS Omega ; 2(5): 1956-1967, 2017 May 31.
Article in English | MEDLINE | ID: mdl-31457554

ABSTRACT

In the past, sodium alanate, NaAlH4, has been widely investigated for its capability to store hydrogen, and its potential for improving storage properties through nanoconfinement in carbon scaffolds has been extensively studied. NaAlH4 has recently been considered for Li-ion storage as a conversion-type anode in Li-ion batteries. Here, NaAlH4 nanoconfined in carbon scaffolds as an anode material for Li-ion batteries is reported for the first time. Nanoconfined NaAlH4 was prepared by melt infiltration into mesoporous carbon scaffolds. In the first cycle, the electrochemical reversibility of nanoconfined NaAlH4 was improved from around 30 to 70% compared to that of nonconfined NaAlH4. Cyclic voltammetry revealed that nanoconfinement alters the conversion pathway, and operando powder X-ray diffraction showed that the conversion from NaAlH4 into Na3AlH6 is favored over the formation of LiNa2AlH6. The electrochemical reactivity of the carbon scaffolds has also been investigated to study their contribution to the overall capacity of the electrodes.

5.
J Mater Chem B ; 1(25): 3167-3174, 2013 Jul 07.
Article in English | MEDLINE | ID: mdl-32260917

ABSTRACT

Ordered mesoporous carbons that encapsulate the poorly soluble compounds ibuprofen and indomethacin were systematically studied by means of X-ray diffraction (XRD), differential scanning calorimetry (DSC) and X-ray photon electron spectroscopy (XPS). The results showed marked differences in the release profiles of the two drug molecules in simulated gastric fluids. In vitro toxicity profiles appear to be compatible with potential therapeutic applications bringing them to the forefront as carriers of poorly water soluble drugs.

6.
Small ; 8(15): 2381-93, 2012 Aug 06.
Article in English | MEDLINE | ID: mdl-22549909

ABSTRACT

Hybrid magnetic drug nanocarriers are prepared via a self-assembly process of poly(methacrylic acid)-graft-poly(ethyleneglycol methacrylate) (p(MAA-g-EGMA)) on growing iron oxide nanocrystallites. The nanocarriers successfully merge together bio-repellent properties, pronounced magnetic response, and high loading capacity for the potent anticancer drug doxorubicin (adriamicin), in a manner not observed before in such hybrid colloids. High magnetic responses are accomplished by engineering the size of the magnetic nanocrystallites (∼13.5 nm) following an aqueous single-ferrous precursor route, and through adjustment of the number of cores in each colloidal assembly. Complementing conventional magnetometry, the magnetic response of the nanocarriers is evaluated by magnetophoretic experiments providing insight into their internal organization and on their response to magnetic manipulation. The structural organization of the graft-copolymer, locked on the surface of the nanocrystallites, is further probed by small-angle neutron scattering on single-core colloids. Analysis showed that the MAA segments selectively populate the area around the magnetic nanocrystallites, while the poly(ethylene glycol)-grafted chains are arranged as protrusions, pointing towards the aqueous environment. These nanocarriers are screened at various pHs and in highly salted media by light scattering and electrokinetic measurements. According to the results, their stability is dramatically enhanced, as compared to uncoated nanocrystallites, owing to the presence of the external protective PEG canopy. The nanocarriers are also endowed with bio-repellent properties, as evidenced by stability assays using human blood plasma as the medium.


Subject(s)
Doxorubicin/administration & dosage , Drug Carriers/chemistry , Magnetics , Doxorubicin/chemistry , Microscopy, Electron, Transmission , Nanoparticles/chemistry , Polyethylene Glycols/chemistry , Thermogravimetry
7.
Nanoscale ; 3(3): 933-6, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21218229

ABSTRACT

A lightweight, oxygen-rich carbon foam was prepared and doped with Pd/Hg alloy nanoparticles. The composite revealed high H2 sorption capacity (5 wt%) at room temperature and moderate pressure (2 MPa). The results were explained on the basis of the H2 spillover mechanism using Density Functional Theory.


Subject(s)
Carbon/chemistry , Hydrogen/chemistry , Hydrogen/isolation & purification , Mercury/chemistry , Models, Chemical , Nanostructures/chemistry , Palladium/chemistry , Absorption , Computer Simulation , Gases/chemistry , Nanostructures/ultrastructure , Particle Size
8.
Small ; 6(24): 2885-91, 2010 Dec 20.
Article in English | MEDLINE | ID: mdl-21104801

ABSTRACT

Stoichoimetric graphene fluoride monolayers are obtained in a single step by the liquid-phase exfoliation of graphite fluoride with sulfolane. Comparative quantum-mechanical calculations reveal that graphene fluoride is the most thermodynamically stable of five studied hypothetical graphene derivatives; graphane, graphene fluoride, bromide, chloride, and iodide. The graphene fluoride is transformed into graphene via graphene iodide, a spontaneously decomposing intermediate. The calculated bandgaps of graphene halides vary from zero for graphene bromide to 3.1 eV for graphene fluoride. It is possible to design the electronic properties of such two-dimensional crystals.


Subject(s)
Graphite/chemistry , Microscopy, Electron, Transmission
9.
Chem Commun (Camb) ; 46(10): 1766-8, 2010 Mar 14.
Article in English | MEDLINE | ID: mdl-20177643

ABSTRACT

Graphene sheets derived from dispersion of graphite in pyridine were functionalised by the 1,3 dipolar cycloaddition of azomethine ylide. The organically modified graphene sheets are easily dispersible in polar organic solvents and water, and they are extensively characterised using several spectroscopic and microscopy techniques.

SELECTION OF CITATIONS
SEARCH DETAIL
...