Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Mult Scler ; 29(14): 1736-1747, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37897254

ABSTRACT

BACKGROUND: Myelin oligodendrocyte glycoprotein (MOG) antibody-associated disease (MOGAD) and pediatric-onset multiple sclerosis (POMS) share clinical and magnetic resonance imaging (MRI) features but differ in prognosis and management. Early POMS diagnosis is essential to avoid disability accumulation. Central vein sign (CVS), paramagnetic rim lesions (PRLs), and central core lesions (CCLs) are susceptibility-based imaging (SbI)-related signs understudied in pediatric populations that may help discerning POMS from MOGAD. METHODS: T2-FLAIR and SbI (three-dimensional echoplanar imaging (3D-EPI)/susceptibility-weighted imaging (SWI) or similar) were acquired on 1.5T/3T scanners. Two readers assessed CVS-positive rate (%CVS+), and their average score was used to build a receiver operator curve (ROC) assessing the ability to discriminate disease type. PRLs and CCLs were identified using a consensual approach. RESULTS: The %CVS+ distinguished 26 POMS cases (mean age 13.7 years, 63% females, median EDSS 1.5) from 14 MOGAD cases (10.8 years, 35% females, EDSS 1.0) with ROC = 1, p < 0.0001, (cutoff 41%). PRLs were only detectable in POMS participants (mean 2.1±2.3, range 1-10), discriminating the two conditions with a sensitivity of 69% and a specificity of 100%. CCLs were more sensitive (81%) but less specific (71.43%). CONCLUSION: The %CVS+ and PRLs are highly specific markers of POMS. After proper validation on larger multicenter cohorts, consideration should be given to including such imaging markers for diagnosing POMS at disease onset.


Subject(s)
Imaging, Three-Dimensional , Multiple Sclerosis , Female , Child , Humans , Adolescent , Male , Myelin-Oligodendrocyte Glycoprotein , Veins , Autoantibodies , Multiple Sclerosis/diagnostic imaging
2.
Mult Scler ; 29(3): 363-373, 2023 03.
Article in English | MEDLINE | ID: mdl-36573559

ABSTRACT

BACKGROUND: Remote activity monitoring has the potential to evaluate real-world, motor function, and disability at home. The relationships of daily physical activity with spinal cord white matter and gray matter (GM) areas, multiple sclerosis (MS) disability and leg function, are unknown. OBJECTIVE: Evaluate the association of structural central nervous system pathology with ambulatory disability. METHODS: Fifty adults with progressive or relapsing MS with motor disability who could walk >2 minutes were assessed using clinician-evaluated, patient-reported outcomes, and quantitative brain and spinal cord magnetic resonance imaging (MRI) measures. Fitbit Flex2, worn on the non-dominant wrist, remotely assessed activity over 30 days. Univariate and multivariate analyses were performed to assess correlations between physical activity and other disability metrics. RESULTS: Mean age was 53.3 years and median Expanded Disability Status Scale (EDSS) was 4.0. Average daily step counts (STEPS) were highly correlated with EDSS and walking measures. Greater STEPS were significantly correlated with greater C2-C3 spinal cord GM areas (ρ = 0.39, p = 0.04), total cord area (TCA; ρ = 0.35, p = 0.04), and cortical GM volume (ρ = 0.32, p = 0.04). CONCLUSION: These results provide preliminary evidence that spinal cord GM area is a neuroanatomical substrate associated with STEPS. STEPS could serve as a proxy to alert clinicians and researchers to possible changes in structural nervous system pathology.


Subject(s)
Cervical Cord , Disabled Persons , Motor Disorders , Multiple Sclerosis , Adult , Humans , Middle Aged , Multiple Sclerosis/pathology , Cervical Cord/pathology , Spinal Cord/pathology , Brain/pathology , Magnetic Resonance Imaging , Walking , Disability Evaluation , Atrophy/pathology
3.
Contemp Clin Trials ; 122: 106941, 2022 11.
Article in English | MEDLINE | ID: mdl-36182028

ABSTRACT

INTRODUCTION: Patients with progressive multiple sclerosis (PMS) experience relentless disability worsening. Current approved therapies have very modest effects on disability progression and purely focus on immunomodulation. While some inflammatory processes exist in non-active PMS, other biological processes such as neuronal injury from oxidative stress are likely more critical. N-acetyl cysteine (NAC) directly scavenges free radicals and restores neuronal glutathione, a major endogenous antioxidant. Our group has recently evaluated the safety of high dose NAC in a pilot trial in PMS with no tolerability concerns. We aim now to assess the safety, tolerability, and effect of NAC on progression of several MRI, clinical and biological markers in PMS patients. METHODS: The NACPMS trial is a multi-site, randomized, double-blind, parallel-group, placebo-controlled add-on phase 2 trial. Ninety-eight PMS patients with EDSS 3.0-7.0 and aged 40-70 years will be randomized to NAC 1200 mg TID or matching placebo (1:1) as an add-on to the standard of care stratified by site and disease type during a 15-month intervention period. It is hypothesized that a reduction in oxidative stress injury will lessen brain atrophy estimated by MRI. The primary outcome analysis will compare the percent change over 12 months (Month 15 vs Month 3) between treatment and control arms using multivariable linear regression adjusted by age, sex, and disease duration. ETHICS: This study was approved by the Institutional Review Board at the University of California, San Francisco (IRB21-34143), and an Investigational New Drug approval was obtained from the FDA (IND127184). TRIAL REGISTRATION: NCT05122559.


Subject(s)
Multiple Sclerosis, Chronic Progressive , Multiple Sclerosis , Neuroprotective Agents , Humans , Neuroprotective Agents/adverse effects , Acetylcysteine/adverse effects , Disease Progression , Multiple Sclerosis, Chronic Progressive/diagnostic imaging , Multiple Sclerosis, Chronic Progressive/drug therapy , Double-Blind Method , Treatment Outcome , Randomized Controlled Trials as Topic , Clinical Trials, Phase II as Topic
5.
Ann Neurol ; 91(2): 268-281, 2022 02.
Article in English | MEDLINE | ID: mdl-34878197

ABSTRACT

OBJECTIVE: A major challenge in multiple sclerosis (MS) research is the understanding of silent progression and Progressive MS. Using a novel method to accurately capture upper cervical cord area from legacy brain MRI scans we aimed to study the role of spinal cord and brain atrophy for silent progression and conversion to secondary progressive disease (SPMS). METHODS: From a single-center observational study, all RRMS (n = 360) and SPMS (n = 47) patients and 80 matched controls were evaluated. RRMS patient subsets who converted to SPMS (n = 54) or silently progressed (n = 159), respectively, during the 12-year observation period were compared to clinically matched RRMS patients remaining RRMS (n = 54) or stable (n = 147), respectively. From brain MRI, we assessed the value of brain and spinal cord measures to predict silent progression and SPMS conversion. RESULTS: Patients who developed SPMS showed faster cord atrophy rates (-2.19%/yr) at least 4 years before conversion compared to their RRMS matches (-0.88%/yr, p < 0.001). Spinal cord atrophy rates decelerated after conversion (-1.63%/yr, p = 0.010) towards those of SPMS patients from study entry (-1.04%). Each 1% faster spinal cord atrophy rate was associated with 69% (p < 0.0001) and 53% (p < 0.0001) shorter time to silent progression and SPMS conversion, respectively. INTERPRETATION: Silent progression and conversion to secondary progressive disease are predominantly related to cervical cord atrophy. This atrophy is often present from the earliest disease stages and predicts the speed of silent progression and conversion to Progressive MS. Diagnosis of SPMS is rather a late recognition of this neurodegenerative process than a distinct disease phase. ANN NEUROL 2022;91:268-281.


Subject(s)
Multiple Sclerosis, Relapsing-Remitting/diagnostic imaging , Multiple Sclerosis, Relapsing-Remitting/pathology , Spinal Cord/pathology , Adult , Atrophy , Brain/diagnostic imaging , Brain/pathology , Disease Progression , Female , Foramen Magnum/diagnostic imaging , Foramen Magnum/pathology , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Predictive Value of Tests , Prognosis , Prospective Studies , Spinal Cord/diagnostic imaging
6.
BMJ Case Rep ; 14(6)2021 Jun 14.
Article in English | MEDLINE | ID: mdl-34127503

ABSTRACT

Paediatric inflammatory multisystem syndrome-temporally associated with SARS-CoV-2 (PIMS-TS) is a recently described syndrome. We describe the case of a 17-year-old man presenting with a recent illness consistent with COVID-19 who presented with fever, chest pain and anterior uveitis. He was treated with aspirin, pulsed methylprednisolone and tocilizumab followed by oral steroids. On day 16 from initial presentation, he developed a facial nerve palsy. He was managed with ongoing steroids and the addition of valaciclovir. PIMS-TS is an under-recognised condition among adult physicians and may not be well known in adult neurology. It is important for adult physicians and neurologists to be aware of PIMS-TS and its possible sequelae.


Subject(s)
COVID-19 , Facial Paralysis , Adolescent , Child , Facial Nerve , Facial Paralysis/drug therapy , Facial Paralysis/etiology , Humans , Male , SARS-CoV-2 , Systemic Inflammatory Response Syndrome
8.
J Neuroimaging ; 30(1): 110-118, 2020 01.
Article in English | MEDLINE | ID: mdl-31571307

ABSTRACT

BACKGROUND AND PURPOSE: The quantification of spinal cord (SC) atrophy by MRI has assumed an important role in assessment of neuroinflammatory/neurodegenerative diseases and traumatic SC injury. Recent technical advances make possible the quantification of gray matter (GM) and white matter tissues in clinical settings. However, the goal of a reliable diagnostic, prognostic or predictive marker is still elusive, in part due to large intersubject variability of SC areas. Here, we investigated the sources of this variability and explored effective strategies to reduce it. METHODS: One hundred twenty-nine healthy subjects (mean age: 41.0 ± 15.9) underwent MRI on a Siemens 3T Skyra scanner. Two-dimensional PSIR at the C2-C3 vertebral level and a sagittal 1 mm3 3D T1-weighted brain acquisition extended to the upper cervical cord were acquired. Total cross-sectional area and GM area were measured at C2-C3, as well as measures of the vertebra, spinal canal and the skull. Correlations between the different metrics were explored using Pearson product-moment coefficients. The most promising metrics were used to normalize cord areas using multiple regression analyses. RESULTS: The most effective normalization metrics were the V-scale (from SienaX) and the product of the C2-C3 spinal canal diameters. Normalization methods based on these metrics reduced the intersubject variability of cord areas of up to 17.74%. The measured cord areas had a statistically significant sex difference, while the effect of age was moderate. CONCLUSIONS: The present work explored in a large cohort of healthy subjects the source of intersubject variability of SC areas and proposes effective normalization methods for its reduction.


Subject(s)
Gray Matter/diagnostic imaging , Spinal Cord/diagnostic imaging , Adult , Aged , Female , Healthy Volunteers , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , Organ Size/physiology , Sex Characteristics , White Matter , Young Adult
9.
Ann Neurol ; 86(5): 671-682, 2019 11.
Article in English | MEDLINE | ID: mdl-31486104

ABSTRACT

OBJECTIVE: To assess whether biological aging as measured by leukocyte telomere length (LTL) is associated with clinical disability and brain volume loss in multiple sclerosis (MS). METHODS: Adults with MS/clinically isolated syndrome in the University of California, San Francisco EPIC cohort study were included. LTL was measured on DNA samples by quantitative polymerase chain reaction and expressed as telomere to somatic DNA (T/S) ratio. Expanded Disability Status Scale (EDSS) and 3-dimensional T1-weighted brain magnetic resonance imaging were performed at baseline and follow-up. Associations of baseline LTL with cross-sectional and longitudinal outcomes were assessed using simple and mixed effects linear regression models. A subset (n = 46) had LTL measured over time, and we assessed the association of LTL change with EDSS change with mixed effects models. RESULTS: Included were 356 women and 160 men (mean age = 43 years, median disease duration = 6 years, median EDSS = 1.5 [range = 0-7], mean T/S ratio = 0.97 [standard deviation = 0.18]). In baseline analyses adjusted for age, disease duration, and sex, for every 0.2 lower LTL, EDSS was 0.27 higher (95% confidence interval [CI] = 0.13-0.42, p < 0.001) and brain volume was 7.4mm3 lower (95% CI = 0.10-14.7, p = 0.047). In longitudinal adjusted analyses, those with lower baseline LTL had higher EDSS and lower brain volumes over time. In adjusted analysis of the subset, LTL change was associated with EDSS change over 10 years; for every 0.2 LTL decrease, EDSS was 0.34 higher (95% CI = 0.08-0.61, p = 0.012). INTERPRETATION: Shorter telomere length was associated with disability independent of chronological age, suggesting that biological aging may contribute to neurological injury in MS. Targeting aging-related mechanisms is a potential therapeutic strategy against MS progression. ANN NEUROL 2019;86:671-682.


Subject(s)
Multiple Sclerosis , Telomere/metabolism , Adult , Aging/physiology , Cellular Senescence/physiology , Cohort Studies , Cross-Sectional Studies , Disability Evaluation , Disease Progression , Female , Humans , Male , Middle Aged , Multiple Sclerosis/metabolism , Multiple Sclerosis/pathology , Telomere/pathology , Telomere Homeostasis/physiology
10.
Ann Neurol ; 85(5): 653-666, 2019 05.
Article in English | MEDLINE | ID: mdl-30851128

ABSTRACT

OBJECTIVE: Rates of worsening and evolution to secondary progressive multiple sclerosis (MS) may be substantially lower in actively treated patients compared to natural history studies from the pretreatment era. Nonetheless, in our recently reported prospective cohort, more than half of patients with relapsing MS accumulated significant new disability by the 10th year of follow-up. Notably, "no evidence of disease activity" at 2 years did not predict long-term stability. Here, we determined to what extent clinical relapses and radiographic evidence of disease activity contribute to long-term disability accumulation. METHODS: Disability progression was defined as an increase in Expanded Disability Status Scale (EDSS) of 1.5, 1.0, or 0.5 (or greater) from baseline EDSS = 0, 1.0-5.0, and 5.5 or higher, respectively, assessed from baseline to year 5 (±1 year) and sustained to year 10 (±1 year). Longitudinal analysis of relative brain volume loss used a linear mixed model with sex, age, disease duration, and HLA-DRB1*15:01 as covariates. RESULTS: Relapses were associated with a transient increase in disability over 1-year intervals (p = 0.012) but not with confirmed disability progression (p = 0.551). Relative brain volume declined at a greater rate among individuals with disability progression compared to those who remained stable (p < 0.05). INTERPRETATION: Long-term worsening is common in relapsing MS patients, is largely independent of relapse activity, and is associated with accelerated brain atrophy. We propose the term silent progression to describe the insidious disability that accrues in many patients who satisfy traditional criteria for relapsing-remitting MS. Ann Neurol 2019;85:653-666.


Subject(s)
Disease Progression , Multiple Sclerosis, Relapsing-Remitting/diagnostic imaging , Multiple Sclerosis, Relapsing-Remitting/therapy , Adult , Cohort Studies , Female , Follow-Up Studies , Humans , Longitudinal Studies , Male , Middle Aged , Prospective Studies
11.
PLoS One ; 13(11): e0208255, 2018.
Article in English | MEDLINE | ID: mdl-30496320

ABSTRACT

BACKGROUND: The spectrum of motor neuron disease (MND) includes numerous phenotypes with various life expectancies. The degree of upper and lower motor neuron involvement can impact prognosis. Phase sensitive inversion recovery (PSIR) imaging has been shown to detect in vivo gray matter (GM) and white matter (WM) atrophy in the spinal cord of other patient populations but has not been explored in MND. METHODS: In this study, total cord, WM and GM areas of ten patients with a diagnosis within the MND spectrum were compared to those of ten healthy controls (HC). Patients' diagnosis included amyotrophic lateral sclerosis (ALS), primary lateral sclerosis, primary muscular atrophy, facial onset sensory and motor neuronopathy and ALS-Frontotemporal dementia. Axial 2D PSIR images were acquired at four cervical disc levels (C2-C3, C3-C4, C5-C6 and C7-T1) with a short acquisition time (2 minutes) protocol. Total cross-sectional areas (TCA), GM and WM areas were measured using a combination of highly reliable manual and semi-automated methods. Cord areas in MND patients were compared with HC using linear regression analyses adjusted for age and sex. Correlation of WM and GM areas in MND patients was explored to gain insights into underlying atrophy patterns. RESULTS: MND patients as a group had significantly smaller cervical cord GM area compared to HC at all four levels (C2-C3: p = .009; C3-C4: p = .001; C5-C6: p = .006; C7-T1: p = .002). WM area at C5-C6 level was significantly smaller (p = .001). TCA was significantly smaller at C3-C4 (p = .018) and C5-C6 (p = .002). No significant GM and WM atrophy was detected in the two patients with predominantly bulbar phenotype. Concomitant GM and WM atrophy was detected in solely upper or lower motor neuron level phenotypes. There was a significant correlation between GM and WM areas at all four levels in this diverse population of MND. CONCLUSION: Spinal cord GM and WM atrophy can be detected in vivo in patients within the MND spectrum using a short acquisition time 2D PSIR imaging protocol. PSIR imaging shows promise as a method for quantifying spinal cord involvement and thus may be useful for diagnosis, prognosis and for monitoring disease progression.


Subject(s)
Motor Neuron Disease/pathology , Spinal Cord/pathology , Adult , Aged , Amyotrophic Lateral Sclerosis/diagnostic imaging , Amyotrophic Lateral Sclerosis/pathology , Atrophy/diagnostic imaging , Atrophy/pathology , Female , Frontotemporal Dementia/diagnostic imaging , Frontotemporal Dementia/pathology , Gray Matter/diagnostic imaging , Gray Matter/pathology , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Middle Aged , Motor Neuron Disease/diagnostic imaging , Spinal Cord/diagnostic imaging , White Matter/diagnostic imaging , White Matter/pathology
12.
BMJ ; 360: k480, 2018 02 06.
Article in English | MEDLINE | ID: mdl-29437657
13.
Brain ; 141(2): 409-421, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29340584

ABSTRACT

Cortical excitability, as measured by transcranial magnetic stimulation combined with electromyography, is a potential biomarker for the diagnosis and follow-up of epilepsy. We report on long-interval intracortical inhibition data measured in four different centres in healthy controls (n = 95), subjects with refractory genetic generalized epilepsy (n = 40) and with refractory focal epilepsy (n = 69). Long-interval intracortical inhibition was measured by applying two supra-threshold stimuli with an interstimulus interval of 50, 100, 150, 200 and 250 ms and calculating the ratio between the response to the second (test stimulus) and to the first (conditioning stimulus). In all subjects, the median response ratio showed inhibition at all interstimulus intervals. Using a mixed linear-effects model, we compared the long-interval intracortical inhibition response ratios between the different subject types. We conducted two analyses; one including data from the four centres and one excluding data from Centre 2, as the methods in this centre differed from the others. In the first analysis, we found no differences in long-interval intracortical inhibition between the different subject types. In all subjects, the response ratios at interstimulus intervals 100 and 150 ms showed significantly more inhibition than the response ratios at 50, 200 and 250 ms. Our second analysis showed a significant interaction between interstimulus interval and subject type (P = 0.0003). Post hoc testing showed significant differences between controls and refractory focal epilepsy at interstimulus intervals of 100 ms (P = 0.02) and 200 ms (P = 0.04). There were no significant differences between controls and refractory generalized epilepsy groups or between the refractory generalized and focal epilepsy groups. Our results do not support the body of previous work that suggests that long-interval intracortical inhibition is significantly reduced in refractory focal and genetic generalized epilepsy. Results from the second analysis are even in sharper contrast with previous work, showing inhibition in refractory focal epilepsy at 200 ms instead of facilitation previously reported. Methodological differences, especially shorter intervals between the pulse pairs, may have contributed to our inability to reproduce previous findings. Based on our results, we suggest that long-interval intracortical inhibition as measured by transcranial magnetic stimulation and electromyography is unlikely to have clinical use as a biomarker of epilepsy.


Subject(s)
Cerebral Cortex/physiopathology , Epilepsy/physiopathology , Evoked Potentials, Motor/physiology , Neural Inhibition/physiology , Transcranial Magnetic Stimulation/methods , Adolescent , Adult , Biomarkers , Child , Electromyography , Epilepsy/diagnosis , Female , Humans , Male , Middle Aged , Retrospective Studies , Time Factors , Young Adult
14.
Magn Reson Med ; 79(3): 1595-1601, 2018 03.
Article in English | MEDLINE | ID: mdl-28617996

ABSTRACT

PURPOSE: To explore (i) the variability of upper cervical cord area (UCCA) measurements from volumetric brain 3D T1 -weighted scans related to gradient nonlinearity (GNL) and subject positioning; (ii) the effect of vendor-implemented GNL corrections; and (iii) easily applicable methods that can be used to retrospectively correct data. METHODS: A multiple sclerosis patient was scanned at seven sites using 3T MRI scanners with the same 3D T1 -weighted protocol without GNL-distortion correction. Two healthy subjects and a phantom were additionally scanned at a single site with varying table positions. The 2D and 3D vendor-implemented GNL-correction algorithms and retrospective methods based on (i) phantom data fit, (ii) normalization with C2 vertebral body diameters, and (iii) the Jacobian determinant of nonlinear registrations to a template were tested. RESULTS: Depending on the positioning of the subject, GNL introduced up to 15% variability in UCCA measurements from volumetric brain T1 -weighted scans when no distortion corrections were used. The 3D vendor-implemented correction methods and the three proposed methods reduced this variability to less than 3%. CONCLUSIONS: Our results raise awareness of the significant impact that GNL can have on quantitative UCCA studies, and point the way to prospectively and retrospectively managing GNL distortions in a variety of settings, including clinical environments. Magn Reson Med 79:1595-1601, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Subject(s)
Brain/diagnostic imaging , Cervical Cord/diagnostic imaging , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Multiple Sclerosis/diagnostic imaging , Algorithms , Cervical Cord/pathology , Humans , Male , Middle Aged , Nonlinear Dynamics , Phantoms, Imaging
15.
Neurology ; 88(17): 1659-1665, 2017 Apr 25.
Article in English | MEDLINE | ID: mdl-28356460

ABSTRACT

OBJECTIVE: Dravet syndrome is a rare neurodevelopmental disorder characterized by seizures and other neurologic problems. SCN1A mutations account for ∼80% of cases. Animal studies have implicated mutation-related dysregulated cortical inhibitory networks in its pathophysiology. We investigated such networks in people with the condition. METHODS: Transcranial magnetic stimulation using single and paired pulse paradigms was applied to people with Dravet syndrome and to 2 control groups to study motor cortex excitability. RESULTS: Short interval intracortical inhibition (SICI), which measures GABAergic inhibitory network behavior, was undetectable in Dravet syndrome, but detectable in all controls. Other paradigms, including those testing excitatory networks, showed no difference between Dravet and control groups. CONCLUSIONS: There were marked differences in inhibitory networks, detected using SICI paradigms, while other inhibitory and excitatory paradigms yielded normal results. These human data showing reduced GABAergic inhibition in vivo in people with Dravet syndrome support established animal models.


Subject(s)
Epilepsies, Myoclonic/physiopathology , Motor Cortex/physiopathology , Neural Inhibition/physiology , Adult , Analysis of Variance , Epilepsies, Myoclonic/genetics , Female , Humans , Male , Middle Aged , Movement/physiology , Mutation , NAV1.1 Voltage-Gated Sodium Channel/genetics , Neural Pathways/physiopathology , Surveys and Questionnaires , Transcranial Magnetic Stimulation/methods , Young Adult , gamma-Aminobutyric Acid/metabolism
16.
Pract Neurol ; 17(3): 207-211, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28119378

ABSTRACT

Epilepsy commonly presents in childhood as part of a syndrome, and some such children may reach adult services without an underlying syndromic diagnosis. For adult neurologists taking over their care, it is often unclear how hard to search for an underlying diagnosis. The diagnostic yield may be small and such a diagnosis may not change management. Young adults with learning difficulties are also challenging to investigate, as they may not tolerate standard epilepsy tests.We present such a case in which simple tests identified a unifying diagnosis. With the new diagnosis came a new treatment that had a significant impact on seizures and quality of life.


Subject(s)
Epilepsy/etiology , Epilepsy/therapy , Guanidinoacetate N-Methyltransferase/deficiency , Language Development Disorders/complications , Movement Disorders/congenital , Adult , Creatine/blood , Creatine/therapeutic use , Creatine/urine , Guanidinoacetate N-Methyltransferase/blood , Guanidinoacetate N-Methyltransferase/genetics , Guanidinoacetate N-Methyltransferase/metabolism , Guanidinoacetate N-Methyltransferase/urine , Humans , Language Development Disorders/genetics , Language Development Disorders/metabolism , Male , Movement Disorders/complications , Movement Disorders/genetics , Movement Disorders/metabolism , Mutation/genetics
17.
Ann Neurol ; 80(4): 499-510, 2016 10.
Article in English | MEDLINE | ID: mdl-27464262

ABSTRACT

OBJECTIVE: To characterize the accrual of long-term disability in a cohort of actively treated multiple sclerosis (MS) patients and to assess whether clinical and magnetic resonance imaging (MRI) data used in clinical trials have long-term prognostic value. METHODS: This is a prospective study of 517 actively managed MS patients enrolled at a single center. RESULTS: More than 91% of patients were retained, with data ascertained up to 10 years after the baseline visit. At this last assessment, neurologic disability as measured by the Expanded Disability Status Scale (EDSS) was stable or improved compared to baseline in 41% of patients. Subjects with no evidence of disease activity (NEDA) by clinical and MRI criteria during the first 2 years had long-term outcomes that were no different from those of the cohort as a whole. 25-OH vitamin D serum levels were inversely associated with short-term MS disease activity; however, these levels had no association with long-term disability. At a median time of 16.8 years after disease onset, 10.7% (95% confidence interval [CI] = 7.2-14%) of patients reached an EDSS ≥ 6, and 18.1% (95% CI = 13.5-22.5%) evolved from relapsing MS to secondary progressive MS (SPMS). INTERPRETATION: Rates of worsening and evolution to SPMS were substantially lower when compared to earlier natural history studies. Notably, the NEDA 2-year endpoint was not a predictor of long-term stability. Finally, the data call into question the utility of annual MRI assessments as a treat-to-target approach for MS care. Ann Neurol 2016;80:499-510.


Subject(s)
Disease Progression , Multiple Sclerosis, Chronic Progressive/diagnostic imaging , Multiple Sclerosis, Chronic Progressive/physiopathology , Multiple Sclerosis, Relapsing-Remitting/diagnostic imaging , Multiple Sclerosis, Relapsing-Remitting/physiopathology , Outcome Assessment, Health Care , Severity of Illness Index , Adult , Disabled Persons , Female , Follow-Up Studies , Humans , Male , Middle Aged , Multiple Sclerosis, Chronic Progressive/drug therapy , Multiple Sclerosis, Relapsing-Remitting/drug therapy , Prognosis
18.
Neuroimage ; 134: 281-294, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27039700

ABSTRACT

A concern for researchers planning multisite studies is that scanner and T1-weighted sequence-related biases on regional volumes could overshadow true effects, especially for studies with a heterogeneous set of scanners and sequences. Current approaches attempt to harmonize data by standardizing hardware, pulse sequences, and protocols, or by calibrating across sites using phantom-based corrections to ensure the same raw image intensities. We propose to avoid harmonization and phantom-based correction entirely. We hypothesized that the bias of estimated regional volumes is scaled between sites due to the contrast and gradient distortion differences between scanners and sequences. Given this assumption, we provide a new statistical framework and derive a power equation to define inclusion criteria for a set of sites based on the variability of their scaling factors. We estimated the scaling factors of 20 scanners with heterogeneous hardware and sequence parameters by scanning a single set of 12 subjects at sites across the United States and Europe. Regional volumes and their scaling factors were estimated for each site using Freesurfer's segmentation algorithm and ordinary least squares, respectively. The scaling factors were validated by comparing the theoretical and simulated power curves, performing a leave-one-out calibration of regional volumes, and evaluating the absolute agreement of all regional volumes between sites before and after calibration. Using our derived power equation, we were able to define the conditions under which harmonization is not necessary to achieve 80% power. This approach can inform choice of processing pipelines and outcome metrics for multisite studies based on scaling factor variability across sites, enabling collaboration between clinical and research institutions.


Subject(s)
Artifacts , Brain/anatomy & histology , Image Interpretation, Computer-Assisted/instrumentation , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/instrumentation , Magnetic Resonance Imaging/methods , Models, Statistical , Algorithms , Computer Simulation , Equipment Design , Equipment Failure Analysis , Europe , Humans , Image Enhancement/instrumentation , Image Enhancement/methods , Reproducibility of Results , Sensitivity and Specificity , United States
19.
PLoS One ; 11(3): e0151667, 2016.
Article in English | MEDLINE | ID: mdl-26999520

ABSTRACT

BACKGROUND: Alternating hemiplegia of childhood is a very rare and serious neurodevelopmental syndrome; its genetic basis has recently been established. Its characteristic features include typically-unprovoked episodes of hemiplegia and other transient or more persistent neurological abnormalities. METHODS: We used transcranial magnetic stimulation to assess the effect of the condition on motor cortex neurophysiology both during and between attacks of hemiplegia. Nine people with alternating hemiplegia of childhood were recruited; eight were successfully tested using transcranial magnetic stimulation to study motor cortex excitability, using single and paired pulse paradigms. For comparison, data from ten people with epilepsy but not alternating hemiplegia, and ten healthy controls, were used. RESULTS: One person with alternating hemiplegia tested during the onset of a hemiplegic attack showed progressively diminishing motor cortex excitability until no response could be evoked; a second person tested during a prolonged bilateral hemiplegic attack showed unusually low excitability. Three people tested between attacks showed asymptomatic variation in cortical excitability, not seen in controls. Paired pulse paradigms, which probe intracortical inhibitory and excitatory circuits, gave results similar to controls. CONCLUSIONS: We report symptomatic and asymptomatic fluctuations in motor cortex excitability in people with alternating hemiplegia of childhood, not seen in controls. We propose that such fluctuations underlie hemiplegic attacks, and speculate that the asymptomatic fluctuation we detected may be useful as a biomarker for disease activity.


Subject(s)
Hemiplegia/physiopathology , Motor Cortex/physiology , Transcranial Magnetic Stimulation , Adolescent , Adult , Case-Control Studies , Evoked Potentials, Motor/physiology , Female , Humans , Male , Mutation/genetics , Young Adult
20.
J Inherit Metab Dis ; 39(2): 321-4, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26743057

ABSTRACT

OBJECTIVE: In Jane Austen's Pride and Prejudice, members of the Bennet family are either sensible or silly, and males are under-represented. This study searches for an underlying medical diagnosis that explains these features. DESIGN: Very retrospective literature review. PARTICIPANTS: Mrs Bennet, her five daughters (Jane, Elizabeth, Mary, Kitty and Lydia), her brother (Mr Gardiner) and her sister (Mrs Phillips). MAIN OUTCOME MEASURES: Family tree and associated phenotypes METHODS: The author read Pride and Prejudice. A Bennet family tree was constructed. The number of male and female descendants was analysed using a binomial model. For each character, evidence of behaviour was collected, and members of the Bennet family were categorised as either sensible or silly. RESULTS: Males are under-represented in Mrs Bennet's family. Assuming an equal probability of male or female offspring, this reaches statistical significance (binomial model, P = 0.03). Approximately 50% of females in the family are silly. Silly behaviour is more prevalent during social gatherings. CONCLUSIONS: The family tree suggests an X-linked genetic disorder, fatal in utero or in early life to affected males, explaining the paucity of male offspring. Female carriers survive, but with cognitive difficulties, explaining the approximate 50-50 distribution of sensible and silly females in the family. The exacerbation of silliness during social gatherings may suggest an effect of protein intake, raising suspicions of a disorder of protein metabolism. Ornithine transcarbamylase deficiency is one such condition. Unfortunately, there remain significant challenges in performing genetic testing on fictional characters, so definitive evidence remains elusive. Jane and Elizabeth Bennet do not show signs of the disorder. However, carriers may be asymptomatic; they should be offered genetic counselling before Bingley or Darcy offspring are considered.


Subject(s)
Genetic Diseases, X-Linked/diagnosis , Models, Statistical , Ornithine Carbamoyltransferase Deficiency Disease/diagnosis , Ornithine Carbamoyltransferase Deficiency Disease/genetics , Personality/genetics , Proteins/genetics , Emotions/physiology , Female , Genetic Diseases, X-Linked/genetics , Humans , Male , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...