Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Cortex ; 167: 51-64, 2023 10.
Article in English | MEDLINE | ID: mdl-37523965

ABSTRACT

We investigated how repeated exposure to a stimulus affects intersubject synchrony in the brains of young and older adults. We used functional magnetic resonance imaging (fMRI) to measure brain responses to familiar and novel stimuli. Young adults participated in a familiarization paradigm designed to mimic 'natural' exposure while older adults were presented with stimuli they had known for more than 50 years. Intersubject synchrony was calculated to detect common stimulus-driven brain activity across young and older adults as they listened to the novel and familiar stimuli. Contrary to our hypotheses, synchrony was not related to the amount of stimulus exposure; both young and older adults showed more synchrony to novel than to familiar stimuli regardless of whether the stimuli had been heard once, known for a few weeks, or known for more than 50 years. In young adults these synchrony differences were found across the brain in the bilateral temporal lobes, and in the frontal orbital cortex. In older adults the synchrony differences were found only in the bilateral temporal lobes. This reduction may be related to an increase in idiosyncratic responses after exposure to a stimulus but does not seem to be related to how well the stimuli are learned or to differences in attention. Until the effects of repeated exposure on synchrony are fully understood, future studies using intersubject synchrony, where the novelty of the stimuli cannot be guaranteed, may consider exposing all of their participants to the stimuli once before data are collected to mitigate the effects of any systematic differences in stimulus exposure.


Subject(s)
Brain Mapping , Magnetic Resonance Imaging , Young Adult , Humans , Aged , Brain Mapping/methods , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Brain/physiology , Temporal Lobe , Learning
2.
Front Hum Neurosci ; 16: 1035195, 2022.
Article in English | MEDLINE | ID: mdl-36819296

ABSTRACT

There is an urgent need to understand the nature of awareness in people with severe Alzheimer's disease (AD) to ensure effective person-centered care. Objective biomarkers of awareness validated in other clinical groups (e.g., anesthesia, minimally conscious states) offer an opportunity to investigate awareness in people with severe AD. In this article we demonstrate the feasibility of using Transcranial magnetic stimulation (TMS) combined with EEG, event related potentials (ERPs) and fMRI to assess awareness in severe AD. TMS-EEG was performed in six healthy older controls and three people with severe AD. The perturbational complexity index (PCIST) was calculated as a measure of capacity for conscious awareness. People with severe AD demonstrated a PCIST around or below the threshold for consciousness, suggesting reduced capacity for consciousness. ERPs were recorded during a visual perception paradigm. In response to viewing faces, two patients with severe AD provisionally demonstrated similar visual awareness negativity to healthy controls. Using a validated fMRI movie-viewing task, independent component analysis in two healthy controls and one patient with severe AD revealed activation in auditory, visual and fronto-parietal networks. Activation patterns in fronto-parietal networks did not significantly correlate between the patient and controls, suggesting potential differences in conscious awareness and engagement with the movie. Although methodological issues remain, these results demonstrate the feasibility of using objective measures of awareness in severe AD. We raise a number of challenges and research questions that should be addressed using these biomarkers of awareness in future studies to improve understanding and care for people with severe AD.

3.
J Cogn Neurosci ; 33(8): 1595-1611, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34496377

ABSTRACT

We investigated how familiarity alters music and language processing in the brain. We used fMRI to measure brain responses before and after participants were familiarized with novel music and language stimuli. To manipulate the presence of language and music in the stimuli, there were four conditions: (1) whole music (music and words together), (2) instrumental music (no words), (3) a capella music (sung words, no instruments), and (4) spoken words. To manipulate participants' familiarity with the stimuli, we used novel stimuli and a familiarization paradigm designed to mimic "natural" exposure, while controlling for autobiographical memory confounds. Participants completed two fMRI scans that were separated by a stimulus training period. Behaviorally, participants learned the stimuli over the training period. However, there were no significant neural differences between the familiar and unfamiliar stimuli in either univariate or multivariate analyses. There were differences in neural activity in frontal and temporal regions based on the presence of language in the stimuli, and these differences replicated across the two scanning sessions. These results indicate that the way we engage with music is important for creating a memory of that music, and these aspects, over and above familiarity on its own, may be responsible for the robust nature of musical memory in the presence of neurodegenerative disorders such as Alzheimer disease.


Subject(s)
Music , Auditory Perception , Humans , Language , Recognition, Psychology , Temporal Lobe
4.
Diagnostics (Basel) ; 9(3)2019 Sep 06.
Article in English | MEDLINE | ID: mdl-31489940

ABSTRACT

Over the past 35 years, the proliferation of technology and the advent of the internet have resulted in many reliable and easy to administer batteries for assessing cognitive function. These approaches have great potential for affecting how the health care system monitors and screens for cognitive changes in the aging population. Here, we review these new technologies with a specific emphasis on what they offer over and above traditional 'paper-and-pencil' approaches to assessing cognitive function. Key advantages include fully automated administration and scoring, the interpretation of individual scores within the context of thousands of normative data points, the inclusion of 'meaningful change' and 'validity' indices based on these large norms, more efficient testing, increased sensitivity, and the possibility of characterising cognition in samples drawn from the general population that may contain hundreds of thousands of test scores. The relationship between these new computerized platforms and existing (and commonly used) paper-and-pencil tests is explored, with a particular emphasis on why computerized tests are particularly advantageous for assessing the cognitive changes associated with aging.

5.
Dev Psychobiol ; 59(3): 375-389, 2017 04.
Article in English | MEDLINE | ID: mdl-28181225

ABSTRACT

We examined the role of early visual input in visual system development by testing adults who had been born with dense bilateral cataracts that blocked all patterned visual input during infancy until the cataractous lenses were removed surgically and the eyes fitted with compensatory contact lenses. Patients viewed checkerboards and textures to explore early processing regions (V1, V2), Glass patterns to examine global form processing (V4), and moving stimuli to explore global motion processing (V5). Patients' ERPs differed from those of controls in that (1) the V1 component was much smaller for all but the simplest stimuli and (2) extrastriate components did not differentiate amongst texture stimuli, Glass patterns, or motion stimuli. The results indicate that early visual deprivation contributes to permanent abnormalities at early and mid levels of visual processing, consistent with enduring behavioral deficits in the ability to process complex textures, global form, and global motion.


Subject(s)
Evoked Potentials, Visual/physiology , Motion Perception/physiology , Pattern Recognition, Visual/physiology , Perceptual Disorders/physiopathology , Sensory Deprivation/physiology , Visual Cortex/physiopathology , Adolescent , Adult , Female , Humans , Male , Perceptual Disorders/etiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...