Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Faraday Discuss ; 208(0): 307-323, 2018 09 03.
Article in English | MEDLINE | ID: mdl-29808213

ABSTRACT

We discuss in this paper two case studies related to nano-particle catalyst systems. One concerns a model system for the Cr/SiO2 Phillips catalyst for ethylene polymerization and here we present XPS data to complement the previously published TPD, IRAS and reactivity studies to elucidate the electronic structure of the system in some detail. The second case study provides additional information on Au nano-particles supported on ultrathin MgO(100)/Ag(100) films where we had observed a specific activity of the particle's rim at the metal-oxide interface with respect to CO2 activation and oxalate formation, obviously connected to electron transfer through the MgO film from the metal substrate underneath. Here we present XPS and Auger data, which allows detailed analysis of the observed chemical shifts. This analysis corroborates previous findings deduced via STM.

2.
J Phys Chem C Nanomater Interfaces ; 120(14): 7629-7638, 2016 Apr 14.
Article in English | MEDLINE | ID: mdl-27110319

ABSTRACT

The exceptional physical properties of graphene have sparked tremendous interests toward two-dimensional (2D) materials with honeycomb structure. We report here the successful fabrication of 2D iron tungstate (FeWO x ) layers with honeycomb geometry on a Pt(111) surface, using the solid-state reaction of (WO3)3 clusters with a FeO(111) monolayer on Pt(111). The formation process and the atomic structure of two commensurate FeWO x phases, with (2 × 2) and (6 × 6) periodicities, have been characterized experimentally by combination of scanning tunneling microscopy (STM), low-energy electron diffraction (LEED), X-ray photoelectron spectroscopy (XPS), and temperature-programmed desorption (TPD) and understood theoretically by density functional theory (DFT) modeling. The thermodynamically most stable (2 × 2) phase has a formal FeWO3 stoichiometry and corresponds to a buckled Fe2+/W4+ layer arranged in a honeycomb lattice, terminated by oxygen atoms in Fe-W bridging positions. This 2D FeWO3 layer has a novel structure and stoichiometry and has no analogues to known bulk iron tungstate phases. It is theoretically predicted to exhibit a ferromagnetic electronic ground state with a Curie temperature of 95 K, as opposed to the antiferromagnetic behavior of bulk FeWO4 materials.

3.
Faraday Discuss ; 188: 309-21, 2016 07 04.
Article in English | MEDLINE | ID: mdl-27064816

ABSTRACT

In order to design catalytic materials, we need to understand the essential causes for material properties resulting from its composite nature. In this paper we discuss two, at first sight, diverse aspects: (a) the effect of the oxide-metal interface on metal nanoparticle properties and (b) the consequences of metal particle modification after activation on the selectivity of hydrogenation reactions. However, these two aspects are intimately linked. The metal nanoparticle's electronic structure changes at the interface as a catalyst is brought to different reaction temperatures due to morphological modifications in the metal and, as we will discuss, these changes in the chemistry lead to changes in the reaction path. As the morphology of the particle varies, facets of different orientations and sizes are exposed, which may lead to a change in the surface chemistry as well. We use two specific reactions to address these issues in some detail. To the best of our knowledge, the present paper reports the first observations of this kind for well-defined model systems. The changes in the electronic structure of Au nanoparticles due to their size and interaction with a supporting oxide are revealed as a function of temperature using CO2 activation as a probe. The presence of spectator species (oxopropyl), formed during an activation step of acrolein hydrogenation, strongly controls the selectivity of the reaction towards hydrogenation of the unsaturated C[double bond, length as m-dash]O bond vs. the C[double bond, length as m-dash]C bond on Pd(111) when compared with oxide-supported Pd nanoparticles.

4.
J Am Chem Soc ; 130(25): 7814-5, 2008 Jun 25.
Article in English | MEDLINE | ID: mdl-18507458

ABSTRACT

A combination of low temperature scanning tunneling microscopy (STM) and theoretical calculations is used to investigate Au dimers, supported on thin MgO(001) films, whose thickness was chosen such that charge transfer from the Ag substrate to the deposited Au is possible. Au dimers exist not only in an upright geometry--as theoretically predicted to be the most stable configuration--but also as flat lying dimers which populate a manifold of different azimuthal orientations. Apart from the difference in adsorption configurations, these two isomers exhibit rather different electronic structures: while upright dimers are neutral, flat ones are charged.

5.
Nanotechnology ; 17(7): S101-6, 2006 Apr 14.
Article in English | MEDLINE | ID: mdl-21727400

ABSTRACT

Atomically resolved images on a MgO(001) thin film deposited on Ag(001) obtained in ultrahigh vacuum by frequency modulated atomic force microscopy at low temperature are presented and analysed. Images obtained in the attractive regime show a different type of contrast formation from those acquired in the repulsive regime. For the interpretation of the image contrast we have investigated the tip-sample interaction. Force and energy were recovered from frequency shift versus distance curves. The derived force curves have been compared to the force laws of long-range, short-range and contact forces. In the attractive regime close to the minimum of the force-distance curve elastic deformations have been confirmed. The recovered energy curve has been scaled to the universal Rydberg model, yielding a decay length of l = 0.3 nm and ΔE = 4.2 aJ (26 eV) for the maximum adhesion energy. A universal binding-energy-distance relation is confirmed for the MgO(001) thin film.

6.
J Phys Chem B ; 109(13): 6061-8, 2005 Apr 07.
Article in English | MEDLINE | ID: mdl-16851666

ABSTRACT

Ultraviolet light-induced electron-hole pair excitations in anatase TiO(2) powders were studied by a combination of electron paramagnetic resonance and infrared spectroscopy measurements. During continuous UV irradiation in the mW.cm(-2) range, photogenerated electrons are either trapped at localized sites, giving paramagnetic Ti(3+) centers, or remain in the conduction band as EPR silent species which may be observed by their IR absorption. Using low temperatures (90 K) to reduce the rate of the electron-hole recombination processes, trapped electrons and conduction band electrons exhibit lifetimes of hours. The EPR-detected holes produced by photoexcitation are O(-) species, produced from lattice O(2-) ions. It is found that under high vacuum conditions, the major fraction of photoexcited electrons remains in the conduction band. At 298 K, all stable hole and electron states are lost from TiO(2). Defect sites produced by oxygen removal during annealing of anatase TiO(2) are found to produce a Ti(3+) EPR spectrum identical to that of trapped electrons, which originate from photoexcitation of oxidized TiO(2). Efficient electron scavenging by adsorbed O(2) at 140 K is found to produce two long-lived O(2)(-) surface species associated with different cation surface sites. Reduced TiO(2), produced by annealing in vacuum, has been shown to be less efficient in hole trapping than oxidized TiO(2).

SELECTION OF CITATIONS
SEARCH DETAIL