Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 121(20): e2322688121, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38709925

ABSTRACT

Brain metastatic breast cancer is particularly lethal largely due to therapeutic resistance. Almost half of the patients with metastatic HER2-positive breast cancer develop brain metastases, representing a major clinical challenge. We previously described that cancer-associated fibroblasts are an important source of resistance in primary tumors. Here, we report that breast cancer brain metastasis stromal cell interactions in 3D cocultures induce therapeutic resistance to HER2-targeting agents, particularly to the small molecule inhibitor of HER2/EGFR neratinib. We investigated the underlying mechanisms using a synthetic Notch reporter system enabling the sorting of cancer cells that directly interact with stromal cells. We identified mucins and bulky glycoprotein synthesis as top-up-regulated genes and pathways by comparing the gene expression and chromatin profiles of stroma-contact and no-contact cancer cells before and after neratinib treatment. Glycoprotein gene signatures were also enriched in human brain metastases compared to primary tumors. We confirmed increased glycocalyx surrounding cocultures by immunofluorescence and showed that mucinase treatment increased sensitivity to neratinib by enabling a more efficient inhibition of EGFR/HER2 signaling in cancer cells. Overexpression of truncated MUC1 lacking the intracellular domain as a model of increased glycocalyx-induced resistance to neratinib both in cell culture and in experimental brain metastases in immunodeficient mice. Our results highlight the importance of glycoproteins as a resistance mechanism to HER2-targeting therapies in breast cancer brain metastases.


Subject(s)
Brain Neoplasms , Breast Neoplasms , Drug Resistance, Neoplasm , Glycocalyx , Quinolines , Receptor, ErbB-2 , Stromal Cells , Humans , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Female , Brain Neoplasms/secondary , Brain Neoplasms/metabolism , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Receptor, ErbB-2/metabolism , Receptor, ErbB-2/genetics , Glycocalyx/metabolism , Animals , Cell Line, Tumor , Stromal Cells/metabolism , Stromal Cells/pathology , Quinolines/pharmacology , Mice , Cell Communication , Coculture Techniques , Mucin-1/metabolism , Mucin-1/genetics , Signal Transduction , ErbB Receptors/metabolism , ErbB Receptors/antagonists & inhibitors
2.
Cancer Res ; 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38507720

ABSTRACT

Inflammatory breast cancer (IBC) is a highly aggressive subtype of breast cancer characterized by rapidly arising diffuse erythema and edema. Genomic studies have not identified consistent alterations and mechanisms that differentiate IBC from non-IBC tumors, suggesting that the microenvironment could be a potential driver of IBC phenotypes. Here, using single-cell RNA sequencing, multiplex staining, and serum analysis in IBC patients, we identified enrichment of a subgroup of luminal progenitor (LP) cells containing high expression of the neurotropic cytokine pleiotrophin (PTN) in IBC tumors. PTN secreted by the LP cells promoted angiogenesis by directly interacting with the NRP1 receptor on endothelial tip cells located in both IBC tumors and the affected skin. NRP1 activation in tip cells led to recruitment of immature perivascular cells in the affected skin of IBC, which are correlated with increased angiogenesis and IBC metastasis. Together, these findings reveal a role for crosstalk between LPs, endothelial tip cells, and immature perivascular cells via PTN-NRP1 axis in the pathogenesis of IBC, which could lead to improved strategies for treating IBC.

3.
Breast Cancer Res ; 26(1): 20, 2024 01 31.
Article in English | MEDLINE | ID: mdl-38297352

ABSTRACT

BACKGROUND: Patients with inflammatory breast cancer (IBC) have overall poor clinical outcomes, with triple-negative IBC (TN-IBC) being associated with the worst survival, warranting the investigation of novel therapies. Preclinical studies implied that ruxolitinib (RUX), a JAK1/2 inhibitor, may be an effective therapy for TN-IBC. METHODS: We conducted a randomized phase II study with nested window-of-opportunity in TN-IBC. Treatment-naïve patients received a 7-day run-in of RUX alone or RUX plus paclitaxel (PAC). After the run-in, those who received RUX alone proceeded to neoadjuvant therapy with either RUX + PAC or PAC alone for 12 weeks; those who had received RUX + PAC continued treatment for 12 weeks. All patients subsequently received 4 cycles of doxorubicin plus cyclophosphamide prior to surgery. Research tumor biopsies were performed at baseline (pre-run-in) and after run-in therapy. Tumors were evaluated for phosphorylated STAT3 (pSTAT3) by immunostaining, and a subset was also analyzed by RNA-seq. The primary endpoint was the percent of pSTAT3-positive pre-run-in tumors that became pSTAT3-negative. Secondary endpoints included pathologic complete response (pCR). RESULTS: Overall, 23 patients were enrolled, of whom 21 completed preoperative therapy. Two patients achieved pCR (8.7%). pSTAT3 and IL-6/JAK/STAT3 signaling decreased in post-run-in biopsies of RUX-treated samples, while sustained treatment with RUX + PAC upregulated IL-6/JAK/STAT3 signaling compared to RUX alone. Both treatments decreased GZMB+ T cells implying immune suppression. RUX alone effectively inhibited JAK/STAT3 signaling but its combination with PAC led to incomplete inhibition. The immune suppressive effects of RUX alone and in combination may negate its growth inhibitory effects on cancer cells. CONCLUSION: In summary, the use of RUX in TN-IBC was associated with a decrease in pSTAT3 levels despite lack of clinical benefit. Cancer cell-specific-targeting of JAK2/STAT3 or combinations with immunotherapy may be required for further evaluation of JAK2/STAT3 signaling as a cancer therapeutic target. TRIAL REGISTRATION: www. CLINICALTRIALS: gov , NCT02876302. Registered 23 August 2016.


Subject(s)
Inflammatory Breast Neoplasms , Nitriles , Paclitaxel , Pyrazoles , Pyrimidines , Triple Negative Breast Neoplasms , Female , Humans , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Inflammatory Breast Neoplasms/drug therapy , Inflammatory Breast Neoplasms/pathology , Interleukin-6 , Neoadjuvant Therapy , Nitriles/therapeutic use , Paclitaxel/therapeutic use , Pyrazoles/therapeutic use , Pyrimidines/therapeutic use , Treatment Outcome , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology
4.
Cell Rep ; 42(12): 113564, 2023 12 26.
Article in English | MEDLINE | ID: mdl-38100350

ABSTRACT

Triple-negative breast cancer (TNBC) is a heterogeneous disease with limited treatment options. To characterize TNBC heterogeneity, we defined transcriptional, epigenetic, and metabolic subtypes and subtype-driving super-enhancers and transcription factors by combining functional and molecular profiling with computational analyses. Single-cell RNA sequencing revealed relative homogeneity of the major transcriptional subtypes (luminal, basal, and mesenchymal) within samples. We found that mesenchymal TNBCs share features with mesenchymal neuroblastoma and rhabdoid tumors and that the PRRX1 transcription factor is a key driver of these tumors. PRRX1 is sufficient for inducing mesenchymal features in basal but not in luminal TNBC cells via reprogramming super-enhancer landscapes, but it is not required for mesenchymal state maintenance or for cellular viability. Our comprehensive, large-scale, multiplatform, multiomics study of both experimental and clinical TNBC is an important resource for the scientific and clinical research communities and opens venues for future investigation.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/pathology , Transcription Factors/metabolism , Gene Expression Regulation, Neoplastic , Homeodomain Proteins/metabolism
5.
Cancer Res ; 83(2): 264-284, 2023 01 18.
Article in English | MEDLINE | ID: mdl-36409824

ABSTRACT

Inflammatory breast cancer (IBC) is a difficult-to-treat disease with poor clinical outcomes due to high risk of metastasis and resistance to treatment. In breast cancer, CD44+CD24- cells possess stem cell-like features and contribute to disease progression, and we previously described a CD44+CD24-pSTAT3+ breast cancer cell subpopulation that is dependent on JAK2/STAT3 signaling. Here we report that CD44+CD24- cells are the most frequent cell type in IBC and are commonly pSTAT3+. Combination of JAK2/STAT3 inhibition with paclitaxel decreased IBC xenograft growth more than either agent alone. IBC cell lines resistant to paclitaxel and doxorubicin were developed and characterized to mimic therapeutic resistance in patients. Multi-omic profiling of parental and resistant cells revealed enrichment of genes associated with lineage identity and inflammation in chemotherapy-resistant derivatives. Integrated pSTAT3 chromatin immunoprecipitation sequencing and RNA sequencing (RNA-seq) analyses showed pSTAT3 regulates genes related to inflammation and epithelial-to-mesenchymal transition (EMT) in resistant cells, as well as PDE4A, a cAMP-specific phosphodiesterase. Metabolomic characterization identified elevated cAMP signaling and CREB as a candidate therapeutic target in IBC. Investigation of cellular dynamics and heterogeneity at the single cell level during chemotherapy and acquired resistance by CyTOF and single cell RNA-seq identified mechanisms of resistance including a shift from luminal to basal/mesenchymal cell states through selection for rare preexisting subpopulations or an acquired change. Finally, combination treatment with paclitaxel and JAK2/STAT3 inhibition prevented the emergence of the mesenchymal chemo-resistant subpopulation. These results provide mechanistic rational for combination of chemotherapy with inhibition of JAK2/STAT3 signaling as a more effective therapeutic strategy in IBC. SIGNIFICANCE: Chemotherapy resistance in inflammatory breast cancer is driven by the JAK2/STAT3 pathway, in part via cAMP/PKA signaling and a cell state switch, which can be overcome using paclitaxel combined with JAK2 inhibitors.


Subject(s)
Breast Neoplasms , Inflammatory Breast Neoplasms , Humans , Female , Inflammatory Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Signal Transduction , Paclitaxel/pharmacology , Paclitaxel/therapeutic use , Stem Cells/metabolism , STAT3 Transcription Factor/metabolism
6.
J Air Waste Manag Assoc ; 71(10): 1210-1233, 2021 10.
Article in English | MEDLINE | ID: mdl-34132629

ABSTRACT

The Fourth National Climate Assessment (NCA4) is the most comprehensive report to date assessing climate change science, impacts, risks, and adaptation in the United States. The 1,500 page report covers a breadth of topics, ranging from foundational physical science to climate change response options. Here we present information on indicators and impacts of climate change in the human environment featured in NCA4 Volume II, focusing on: air quality, forest disturbance and wildfire, energy systems, and water resources. Observations, trends, and impacts of these aspects of our changing climate will be discussed, along with implications for the future. Implications: People of the United States are already being affected by our changing climate. Information on observed changes and impacts that affect human welfare and society, along with projections for the future, is highly valuable for informing decision-makers, including utility managers, emergency planners, and other stakeholders, about climate risk assessment, adaptation, and mitigation options.


Subject(s)
Air Pollution , Climate Change , Humans , Risk Assessment , United States
7.
Oncogene ; 39(18): 3726-3737, 2020 04.
Article in English | MEDLINE | ID: mdl-32157212

ABSTRACT

Lineage selective transcription factors (TFs) are important regulators of tumorigenesis, but their biological functions are often context dependent with undefined epigenetic mechanisms of action. In this study, we uncover a conditional role for the endodermal and pulmonary specifying TF GATA6 in lung adenocarcinoma (LUAD) progression. Impairing Gata6 in genetically engineered mouse models reduces the proliferation and increases the differentiation of Kras mutant LUAD tumors. These effects are influenced by the epithelial cell type that is targeted for transformation and genetic context of Kras-mediated tumor initiation. In LUAD cells derived from surfactant protein C expressing progenitors, we identify multiple genomic loci that are bound by GATA6. Moreover, suppression of Gata6 in these cells significantly alters chromatin accessibility, particularly at distal enhancer elements. Analogous to its paradoxical activity in lung development, GATA6 expression fluctuates during different stages of LUAD progression and can epigenetically control diverse transcriptional programs associated with bone morphogenetic protein signaling, alveolar specification, and tumor suppression. These findings reveal how GATA6 can modulate the chromatin landscape of lung cancer cells to control their proliferation and divergent lineage dependencies during tumor progression.


Subject(s)
Adenocarcinoma of Lung/genetics , GATA6 Transcription Factor/genetics , Lung Neoplasms/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Adenocarcinoma of Lung/pathology , Animals , Carcinogenesis/genetics , Cell Differentiation/genetics , Cell Lineage/genetics , Cell Proliferation/genetics , Chromatin/genetics , Disease Models, Animal , Gene Expression Regulation, Neoplastic/genetics , Humans , Lung/metabolism , Lung/pathology , Lung Neoplasms/pathology , Mice
8.
Cancer Res ; 79(16): 4173-4183, 2019 08 15.
Article in English | MEDLINE | ID: mdl-31239270

ABSTRACT

To define transcriptional dependencies of triple-negative breast cancer (TNBC), we identified transcription factors highly and specifically expressed in primary TNBCs and tested their requirement for cell growth in a panel of breast cancer cell lines. We found that EN1 (engrailed 1) is overexpressed in TNBCs and its downregulation preferentially and significantly reduced viability and tumorigenicity in TNBC cell lines. By integrating gene expression changes after EN1 downregulation with EN1 chromatin binding patterns, we identified genes involved in WNT and Hedgehog signaling, neurogenesis, and axonal guidance as direct EN1 transcriptional targets. Quantitative proteomic analyses of EN1-bound chromatin complexes revealed association with transcriptional repressors and coactivators including TLE3, TRIM24, TRIM28, and TRIM33. High expression of EN1 correlated with short overall survival and increased risk of developing brain metastases in patients with TNBC. Thus, EN1 is a prognostic marker and a potential therapeutic target in TNBC. SIGNIFICANCE: These findings show that the EN1 transcription factor regulates neurogenesis-related genes and is associated with brain metastasis in triple-negative breast cancer.


Subject(s)
Brain Neoplasms/secondary , Homeodomain Proteins/genetics , Triple Negative Breast Neoplasms/mortality , Triple Negative Breast Neoplasms/pathology , Brain Neoplasms/genetics , Brain Neoplasms/mortality , Co-Repressor Proteins/genetics , Co-Repressor Proteins/metabolism , Female , Gene Expression Regulation, Neoplastic , Humans , MCF-7 Cells , Prognosis , Transcription Factors/genetics , Triple Negative Breast Neoplasms/genetics , Xenograft Model Antitumor Assays
9.
J Vis Exp ; (136)2018 06 28.
Article in English | MEDLINE | ID: mdl-30010648

ABSTRACT

Lung cancer is a deadly treatment refractory disease that is biologically heterogeneous. To understand and effectively treat the full clinical spectrum of thoracic malignancies, additional animal models that can recapitulate diverse human lung cancer subtypes and stages are needed. Allograft or xenograft models are versatile and enable the quantification of tumorigenic capacity in vivo, using malignant cells of either murine or human origin. However, previously described methods of lung cancer cell engraftment have been performed in non-physiological sites, such as the flank of mice, due to the inefficiency of orthotopic transplantation of cells into the lungs. In this study, we describe a method to enhance orthotopic lung cancer cell engraftment by pre-conditioning the airways of mice with the fibrosis inducing agent bleomycin. As a proof-of-concept experiment, we applied this approach to engraft tumor cells of the lung adenocarcinoma subtype, obtained from either mouse or human sources, into various strains of mice. We demonstrate that injuring the airways with bleomycin prior to tumor cell injection increases the engraftment of tumor cells from 0-17% to 71-100%. Significantly, this method enhanced lung tumor incidence and subsequent outgrowth using different models and mouse strains. In addition, engrafted lung cancer cells disseminate from the lungs into relevant distant organs. Thus, we provide a protocol that can be used to establish and maintain new orthotopic models of lung cancer with limiting amounts of cells or biospecimen and to quantitatively assess the tumorigenic capacity of lung cancer cells in physiologically relevant settings.


Subject(s)
Antibiotics, Antineoplastic/therapeutic use , Bleomycin/therapeutic use , Lung Neoplasms/drug therapy , Lung/pathology , Animals , Antibiotics, Antineoplastic/pharmacology , Bleomycin/pharmacology , Disease Models, Animal , Lung Neoplasms/pathology , Mice
10.
Cancer Res ; 77(8): 1905-1917, 2017 04 15.
Article in English | MEDLINE | ID: mdl-28196904

ABSTRACT

Mechanisms underlying the propensity of latent lung adenocarcinoma (LUAD) to relapse are poorly understood. In this study, we show how differential expression of a network of extracellular matrix (ECM) molecules and their interacting proteins contributes to risk of relapse in distinct LUAD subtypes. Overexpression of the hyaluronan receptor HMMR in primary LUAD was associated with an inflammatory molecular signature and poor prognosis. Attenuating HMMR in LUAD cells diminished their ability to initiate lung tumors and distant metastases. HMMR upregulation was not required for dissemination in vivo, but enhanced ECM-mediated signaling, LUAD cell survival, and micrometastasis expansion in hyaluronan-rich microenvironments in the lung and brain metastatic niches. Our findings reveal an important mechanism by which disseminated cancer cells can coopt the inflammatory ECM to persist, leading to brain metastatic outgrowths. Cancer Res; 77(8); 1905-17. ©2017 AACR.


Subject(s)
Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Extracellular Matrix Proteins/biosynthesis , Hyaluronan Receptors/biosynthesis , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Adenocarcinoma/genetics , Adenocarcinoma of Lung , Animals , Brain Neoplasms/metabolism , Brain Neoplasms/secondary , Cell Line, Tumor , Extracellular Matrix/genetics , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Extracellular Matrix Proteins/genetics , Gene Expression , Humans , Hyaluronan Receptors/genetics , Lung Neoplasms/genetics , Male , Mice , Mice, Nude , Neoplasm Micrometastasis , Transcriptome , Tumor Microenvironment
11.
Oncotarget ; 7(45): 74043-74058, 2016 Nov 08.
Article in English | MEDLINE | ID: mdl-27677075

ABSTRACT

Colorectal cancer (CRC) is the third most common cancer and a leading cause of cancer-related mortality. Observed during CRC tumorigenesis is loss of post-transcriptional regulation of tumor-promoting genes such as COX-2, TNFα and VEGF. Overexpression of the RNA-binding protein HuR (ELAVL1) occurs during colon tumorigenesis and is abnormally present within the cytoplasm, where it post-transcriptionally regulates genes through its interaction with 3'UTR AU-rich elements (AREs). Here, we examine the therapeutic potential of targeting HuR using MS-444, a small molecule HuR inhibitor. Treatment of CRC cells with MS-444 resulted in growth inhibition and increased apoptotic gene expression, while similar treatment doses in non-transformed intestinal cells had no appreciable effects. Mechanistically, MS-444 disrupted HuR cytoplasmic trafficking and released ARE-mRNAs for localization to P-bodies, but did not affect total HuR expression levels. This resulted in MS-444-mediated inhibition of COX-2 and other ARE-mRNA expression levels. Importantly, MS-444 was well tolerated and inhibited xenograft CRC tumor growth through enhanced apoptosis and decreased angiogenesis upon intraperitoneal administration. In vivo treatment of MS-444 inhibited HuR cytoplasmic localization and decreased COX-2 expression in tumors. These findings provide evidence that therapeutic strategies to target HuR in CRC warrant further investigation in an effort to move this approach to the clinic.


Subject(s)
Colorectal Neoplasms/drug therapy , ELAV-Like Protein 1/antagonists & inhibitors , Furans/pharmacology , Naphthols/pharmacology , Animals , Carcinogenesis , Cell Line, Tumor , Cell Proliferation/drug effects , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Cyclooxygenase 2/metabolism , Cyclooxygenase 2 Inhibitors/pharmacology , ELAV-Like Protein 1/metabolism , HCT116 Cells , HT29 Cells , Humans , Mice , Mice, Nude , Transfection , Xenograft Model Antitumor Assays
12.
Cancer Cell ; 23(6): 725-38, 2013 Jun 10.
Article in English | MEDLINE | ID: mdl-23707782

ABSTRACT

Molecular programs that mediate normal cell differentiation are required for oncogenesis and tumor cell survival in certain cancers. How cell-lineage-restricted genes specifically influence metastasis is poorly defined. In lung cancers, we uncovered a transcriptional program that is preferentially associated with distal airway epithelial differentiation and lung adenocarcinoma (ADC) progression. This program is regulated in part by the lineage transcription factors GATA6 and HOPX. These factors can cooperatively limit the metastatic competence of ADC cells, by modulating overlapping alveolar differentiation and invasogenic target genes. Thus, GATA6 and HOPX are critical nodes in a lineage-selective pathway that directly links effectors of airway epithelial specification to the inhibition of metastasis in the lung ADC subtype.


Subject(s)
Adenocarcinoma/pathology , GATA6 Transcription Factor/physiology , Homeodomain Proteins/physiology , Lung Neoplasms/pathology , Neoplasm Metastasis/pathology , Tumor Suppressor Proteins/physiology , Adenocarcinoma/genetics , Adenocarcinoma of Lung , Cell Differentiation , Cell Line, Tumor , Cell Lineage , Cluster Analysis , Epithelium/pathology , GATA6 Transcription Factor/genetics , GATA6 Transcription Factor/metabolism , Gene Expression Regulation , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Lung Neoplasms/genetics , Neoplasm Invasiveness , Neoplasm Metastasis/genetics , Pulmonary Alveoli/cytology , Pulmonary Alveoli/pathology , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
13.
Genes Cancer ; 3(1): 51-62, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22893790

ABSTRACT

AMP-activated kinase (AMPK) is a key metabolic sensor and stress signaling kinase. AMPK activity is known to suppress anabolic processes such as protein and lipid biosynthesis and promote energy-producing pathways including fatty acid oxidation, resulting in increased cellular energy. In addition, AMPK localizes to centrosomes during cell division, plays a role in cellular polarization, and directly targets p53, affecting apoptosis. Two distinct catalytic AMPKα isoforms exist: α1 and α2. Multiple reports indicate that both common and distinct functions exist for each of the 2 α isoforms. AMPK activation has been shown to repress tumor growth, and it has been suggested that AMPK may function as a metabolic tumor suppressor. To evaluate the potential role of each of the AMPKα isoforms in modulating cellular transformation, susceptibility to Ras-induced transformation was evaluated in normal murine embryonic fibroblasts (MEFs) obtained from genetically deleted AMPKα1- or AMPKα2-null mice. This study demonstrated that while AMPKα1 is the dominant AMPK isoform expressed in MEFs, only the AMPKα2-null MEFs displayed increased susceptibility to H-RasV12 transformation in vitro and tumorigenesis in vivo. Conversely, AMPKα1-null MEFs, which demonstrated compensation with increased expression of AMPKα2, displayed minimal transformation susceptibility, decreased cell survival, decreased cell proliferation, and increased apoptosis. Finally, this study demonstrates that AMPKα2 was selectively responsible for targeting p53, thus contributing to the suppression of transformation and tumorigenic mechanisms.

SELECTION OF CITATIONS
SEARCH DETAIL
...