Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Psychopharmacology (Berl) ; 215(1): 149-63, 2011 May.
Article in English | MEDLINE | ID: mdl-21181124

ABSTRACT

RATIONALE: The psychotomimetic effects of cannabis are believed to be mediated via cannabinoid CB1 receptors. Furthermore, studies have implicated CB1 receptors in the pathophysiology of schizophrenia. OBJECTIVE: These studies investigated the effects of the CB1 receptor antagonist, AVE1625, in acute pharmacological and neurodevelopmental models of schizophrenia. AVE1625 was administered to rodents alone or as a co-treatment with clinically used antipsychotic drugs (APDs). METHODS: The antipsychotic potential of AVE1625 was tested using psychotomimetic-induced hyperactivity and latent inhibition (LI) deficit models. The procognitive profile was assessed using hole board, novel object recognition, auditory evoked potential, and LI techniques. In addition, the side-effect profile was established by measuring catalepsy, antipsychotic-induced weight gain, plasma levels of prolactin, and anxiogenic potential. RESULTS: AVE1625 (1, 3, and 10 mg/kg ip), reversed abnormally persistent LI induced by MK-801 or neonatal nitric oxide synthase inhibition in rodents, and improved both working and episodic memory. AVE1625 was not active in positive symptom models but importantly, it did not diminish the efficacy of APDs. It also decreased catalepsy and weight gain induced by APDs, suggesting that it may decrease APD-induced extrapyramidal side effects (EPS) and compliance. Unlike other CB1 antagonists, AVE1625 did not produce anxiogenic-like effects. CONCLUSIONS: These preclinical data suggest that AVE1625 may be useful to treat the cognitive deficits in schizophrenia and as a co-treatment with currently available antipsychotics. In addition, an improved side-effect profile was seen, with potential to ameliorate the EPS and weight gain issues with currently available treatments.


Subject(s)
Antipsychotic Agents/adverse effects , Antipsychotic Agents/therapeutic use , Cognition/drug effects , Hydrocarbons, Halogenated/therapeutic use , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Schizophrenia/drug therapy , Sulfonamides/therapeutic use , Acoustic Stimulation , Amphetamine/pharmacology , Animals , Antipsychotic Agents/administration & dosage , Anxiety/chemically induced , Anxiety/prevention & control , Behavior, Animal/drug effects , Catalepsy/chemically induced , Catalepsy/prevention & control , Conditioning, Classical/drug effects , Disease Models, Animal , Drug Evaluation, Preclinical , Drug Therapy, Combination , Evoked Potentials, Auditory/drug effects , Hydrocarbons, Halogenated/administration & dosage , Hydrocarbons, Halogenated/adverse effects , Male , Mice , Mice, Inbred Strains , Rats , Rats, Sprague-Dawley , Schizophrenia/metabolism , Schizophrenia/physiopathology , Sulfonamides/administration & dosage , Sulfonamides/adverse effects , Weight Gain/drug effects
2.
Pharmacol Biochem Behav ; 98(3): 405-11, 2011 May.
Article in English | MEDLINE | ID: mdl-21115031

ABSTRACT

The current work extends our previous findings in stress-related disorders, but also addresses the impact of a neurokinin-2 (NK2) antagonist on cognition. Besides efficacy in mood disorders, an NK2 antagonist may have the potential to lack the disinhibitory components and adverse side effects associated with existing clinical treatments. Saredutant (3-30 mg/kg, per os, p.o.) was tested for anxiolytic-like potential in three mouse models: holeboard, stress-induced hyperthermia (SIH) and four-plate. In the holeboard model saredutant (30 mg/kg) showed a trend to increase head dipping without affecting general activity. In the SIH model, saredutant demonstrated a significant reduction in stress-induced temperature at 30 mg/kg, while the number of punished crossings in the four-plate was increased at all doses tested (3-30 mg/kg). While chlordiazepoxide (CDP) demonstrated anxiolytic-like effects in these models, the adverse side effects of benzodiazepines, such as sedation, disinhibition and cognitive deficits are well-documented. Saredutant produced no detrimental effect in three models of cognition: Morris Water Maze (MWM) in rats, spontaneous alternation in a Y-maze in mice and novel objection recognition in mice. In contrast, the benzodiazepine, diazepam (DZM), produced cognitive impairments. NK2 receptor antagonists like saredutant may therefore yield beneficial effects for mood disorders without the adverse effects of current treatments.


Subject(s)
Antidepressive Agents/pharmacology , Benzamides/pharmacology , Cognition/drug effects , Piperidines/pharmacology , Receptors, Neurokinin-2/antagonists & inhibitors , Stress, Physiological/drug effects , Animals , Male , Mice , Mice, Inbred C57BL , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...