Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 13: 974210, 2022.
Article in English | MEDLINE | ID: mdl-36275684

ABSTRACT

The zoonotic H7N9 avian influenza (AI) virus first emerged in 2013 as a low pathogenic (LPAI) strain, and has repeatedly caused human infection resulting in severe respiratory illness and a mortality of ~39% (>600 deaths) across five epidemic waves. This virus has circulated in poultry with little to no discernible clinical signs, making detection and control difficult. Contrary to published data, our group has observed a subset of specific pathogen free chickens infected with the H7N9 virus succumb to disease, showing clinical signs consistent with highly pathogenic AI (HPAI). Viral genome sequencing revealed two key mutations had occurred following infection in the haemagglutinin (HA 226 L>Q) and nucleoprotein (NP 373 A>T) proteins. We further investigated the impact of the NP mutation and demonstrated that only chickens bearing a single nucleotide polymorphism (SNP) in their IFITM1 gene were susceptible to the H7N9 virus. Susceptible chickens demonstrated a distinct loss of CD8+ T cells from the periphery as well as a dysregulation of IFNγ that was not observed for resistant chickens, suggesting a role for the NP mutation in altered T cell activation. Alternatively, it is possible that this mutation led to altered polymerase activity, as the mutation occurs in the NP 360-373 loop which has been previously show to be important in RNA binding. These data have broad ramifications for our understanding of the pathobiology of AI in chickens and humans and provide an excellent model for investigating the role of antiviral genes in a natural host species.


Subject(s)
Influenza A Virus, H7N9 Subtype , Influenza in Birds , Animals , Humans , Influenza in Birds/genetics , Influenza in Birds/epidemiology , Influenza A Virus, H7N9 Subtype/genetics , Chickens/genetics , Hemagglutinins/genetics , Nucleoproteins/genetics , CD8-Positive T-Lymphocytes/pathology , Mutation , Antiviral Agents , RNA
2.
Front Vet Sci ; 9: 899889, 2022.
Article in English | MEDLINE | ID: mdl-35782560

ABSTRACT

CAIs (canine-assisted interventions) include "canine-assisted therapy" in which a therapist sets client-oriented goals, 'canine-assisted activities' with recreational goals for clients, and 'canine-assisted education/learning' in which teachers or coaches create learning goals for students or clients. CAIs vary in nearly every way; their only common trait is the involvement of dogs to respond to human need. However, the benefits of involving dogs are highly dependent on the animal's health and behavior. A dog exhibiting negative behavior or an unwell dog might pose a risk, especially for CAI target groups, specifically individuals with immunosuppression, chronic illness, children, elderly, etc. Therefore, positive animal welfare as preventative medicine to avoid incidents or transmission of zoonosis is an attractive hypothesis, with implications for human and animal, health and well-being. This review aims to summarize the current published knowledge regarding different aspects of welfare in CAIs and to discuss their relevance in the light of health and safety in CAI participants. As method for this study, a literature search was conducted (2001-2022) using the Prisma method, describing issues of dog welfare as defined in the Welfare Quality® approach. This welfare assessment tool includes 4 categories related to behavior, health, management, and environment; it was, therefore, applicable to CAIs. Results indicate that dogs working in CAIs are required to cope with diverse variables that can jeopardize their welfare. In conclusion, we propose regular welfare assessments for dogs in CAIs, which would also protect the quality of the CAI sessions and the clients' safety and well-being.

3.
PLoS Pathog ; 18(5): e1010150, 2022 05.
Article in English | MEDLINE | ID: mdl-35536868

ABSTRACT

Most of our understanding of the ecology and evolution of avian influenza A virus (AIV) in wild birds is derived from studies conducted in the northern hemisphere on waterfowl, with a substantial bias towards dabbling ducks. However, relevant environmental conditions and patterns of avian migration and reproduction are substantially different in the southern hemisphere. Through the sequencing and analysis of 333 unique AIV genomes collected from wild birds collected over 15 years we show that Australia is a global sink for AIV diversity and not integrally linked with the Eurasian gene pool. Rather, AIV are infrequently introduced to Australia, followed by decades of isolated circulation and eventual extinction. The number of co-circulating viral lineages varies per subtype. AIV haemagglutinin (HA) subtypes that are rarely identified at duck-centric study sites (H8-12) had more detected introductions and contemporary co-circulating lineages in Australia. Combined with a lack of duck migration beyond the Australian-Papuan region, these findings suggest introductions by long-distance migratory shorebirds. In addition, on the available data we found no evidence of directional or consistent patterns in virus movement across the Australian continent. This feature corresponds to patterns of bird movement, whereby waterfowl have nomadic and erratic rainfall-dependant distributions rather than consistent intra-continental migratory routes. Finally, we detected high levels of virus gene segment reassortment, with a high diversity of AIV genome constellations across years and locations. These data, in addition to those from other studies in Africa and South America, clearly show that patterns of AIV dynamics in the Southern Hemisphere are distinct from those in the temperate north.


Subject(s)
Influenza A virus , Influenza in Birds , Animals , Animals, Wild , Australia/epidemiology , Birds , Ducks , Genetic Variation , Influenza A virus/genetics , Influenza in Birds/epidemiology , Phylogeny
4.
Transbound Emerg Dis ; 67(4): 1453-1462, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32306500

ABSTRACT

Pre-clinical responses to fast-moving infectious disease outbreaks heavily depend on choosing the best isolates for animal models that inform diagnostics, vaccines and treatments. Current approaches are driven by practical considerations (e.g. first available virus isolate) rather than a detailed analysis of the characteristics of the virus strain chosen, which can lead to animal models that are not representative of the circulating or emerging clusters. Here, we suggest a combination of epidemiological, experimental and bioinformatic considerations when choosing virus strains for animal model generation. We discuss the currently chosen SARS-CoV-2 strains for international coronavirus disease (COVID-19) models in the context of their phylogeny as well as in a novel alignment-free bioinformatic approach. Unlike phylogenetic trees, which focus on individual shared mutations, this new approach assesses genome-wide co-developing functionalities and hence offers a more fluid view of the 'cloud of variances' that RNA viruses are prone to accumulate. This joint approach concludes that while the current animal models cover the existing viral strains adequately, there is substantial evolutionary activity that is likely not considered by the current models. Based on insights from the non-discrete alignment-free approach and experimental observations, we suggest isolates for future animal models.


Subject(s)
Computational Biology , Coronavirus Infections/epidemiology , Disease Outbreaks , Genomics , Pandemics/prevention & control , Pneumonia, Viral/epidemiology , Animals , Betacoronavirus/genetics , Biological Evolution , COVID-19 , Disease Models, Animal , Humans , Phylogeny , SARS-CoV-2
6.
J Immunol Methods ; 331(1-2): 1-12, 2008 Feb 29.
Article in English | MEDLINE | ID: mdl-18191140

ABSTRACT

Knowledge of immunodominant regions in major viral antigens is important for rational design of effective vaccines and diagnostic tests. Although there have been many reports of such work done for SARS-CoV, these were mainly focused on the immune responses of humans and mice. In this study, we aim to search for and compare immunodominant regions of the spike (S) and nucleocapsid (N) proteins which are recognized by sera from different animal species, including mouse, rat, rabbit, civet, pig and horse. Twelve overlapping recombinant protein fragments were produced in Escherichia coli, six each for the S and N proteins, which covered the entire coding region of the two proteins. Using a membrane-strip based Western blot approach, the reactivity of each antigen fragment against a panel of animal sera was determined. Immunodominant regions containing linear epitopes, which reacted with sera from all the species tested, were identified for both proteins. The S3 fragment (aa 402-622) and the N4 fragment (aa 220-336) were the most immunodominant among the six S and N fragments, respectively. Antibodies raised against the S3 fragment were able to block the binding of a panel of S-specific monoclonal antibodies (mAb) to SARS-CoV in ELISA, further demonstrating the immunodominance of this region. Based on these findings, one-step competition ELISAs were established which were able to detect SARS-CoV antibodies from human and at least seven different animal species. Considering that a large number of animal species are known to be susceptible to SARS-CoV, these assays will be a useful tool to trace the origin and transmission of SARS-CoV and to minimise the risk of animal-to-human transmission.


Subject(s)
Antibodies, Viral/immunology , Enzyme-Linked Immunosorbent Assay/methods , Immunodominant Epitopes/immunology , Membrane Glycoproteins/immunology , Nucleocapsid Proteins/immunology , Severe acute respiratory syndrome-related coronavirus/immunology , Viral Envelope Proteins/immunology , Animals , Antibodies, Viral/blood , Antigens, Viral/immunology , Cell Line , Coronavirus Nucleocapsid Proteins , Horses , Humans , Mice , Rabbits , Rats , Recombinant Proteins/immunology , Severe Acute Respiratory Syndrome/diagnosis , Spike Glycoprotein, Coronavirus , Swine , Viverridae
SELECTION OF CITATIONS
SEARCH DETAIL
...