Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Cancer Res Commun ; 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39287565

ABSTRACT

High-grade serous ovarian cancer (HGSOC) remains a poorly understood disease with a high mortality rate. While most patients respond to cytotoxic therapies, a majority will experience recurrence. This may be due to a minority of drug resistant cancer stem-like cells (CSCs) that survive chemotherapy and are capable of repopulating heterogenous tumors. It remains unclear how CSCs are supported in the tumor microenvironment (TME) particularly during chemotherapy exposure. Tumor associated macrophages (TAMs) make up half of the immune population of the ovarian TME and are known to support CSCs and contribute to cancer progression. TAMs are plastic cells that alter their phenotype in response to environmental stimuli and thus may influence CSC maintenance during chemotherapy. Given the plasticity of TAMs we studied the effects of carboplatin on macrophage phenotypes using both THP-1- and peripheral blood mononuclear cell (PBMC)- derived macrophages and whether this supports CSCs and ovarian cancer progression following treatment. We found that carboplatin exposure induces an M1-like pro-inflammatory phenotype that promotes SOX2 expression, spheroid formation, and CD117+ ovarian CSCs, and that macrophage-secreted CCL2/MCP-1 is at least partially responsible for this effect. Depletion of TAMs during carboplatin exposure results in fewer CSCs and prolonged survival in a xenograft model of ovarian cancer. This study supports a role for platinum-based chemotherapies in promoting a transient pro-inflammatory M1-like TAM that enriches for CSCs during treatment. Improving our understanding of TME responses to cytotoxic drugs and identifying novel mechanisms of CSC maintenance will enable the development of better therapeutic strategies for HGSOC.

2.
Mol Cancer Res ; 21(2): 170-186, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36214671

ABSTRACT

Disease recurrence in high-grade serous ovarian cancer may be due to cancer stem-like cells (CSC) that are resistant to chemotherapy and capable of reestablishing heterogeneous tumors. The alternative NF-κB signaling pathway is implicated in this process; however, the mechanism is unknown. Here we show that TNF-like weak inducer of apoptosis (TWEAK) and its receptor, Fn14, are strong inducers of alternative NF-κB signaling and are enriched in ovarian tumors following chemotherapy treatment. We further show that TWEAK enhances spheroid formation ability, asymmetric division capacity, and expression of SOX2 and epithelial-to-mesenchymal transition genes VIM and ZEB1 in ovarian cancer cells, phenotypes that are enhanced when TWEAK is combined with carboplatin. Moreover, TWEAK in combination with chemotherapy induces expression of the CSC marker CD117 in CD117- cells. Blocking the TWEAK-Fn14-RelB signaling cascade with a small-molecule inhibitor of Fn14 prolongs survival following carboplatin chemotherapy in a mouse model of ovarian cancer. These data provide new insights into ovarian cancer CSC biology and highlight a signaling axis that should be explored for therapeutic development. IMPLICATIONS: This study identifies a unique mechanism for the induction of ovarian cancer stem cells that may serve as a novel therapeutic target for preventing relapse.


Subject(s)
NF-kappa B , Ovarian Neoplasms , Humans , Animals , Female , Mice , NF-kappa B/metabolism , Tumor Necrosis Factors/genetics , Tumor Necrosis Factors/metabolism , Carboplatin/pharmacology , Receptors, Tumor Necrosis Factor/genetics , TWEAK Receptor/genetics , Cell Line, Tumor , Neoplasm Recurrence, Local/drug therapy , Cytokine TWEAK , Signal Transduction/genetics , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Stem Cells/metabolism , Transcription Factor RelB/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL