Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 6030, 2023 09 27.
Article in English | MEDLINE | ID: mdl-37758692

ABSTRACT

Influenza A Virus (IAV) is a recurring respiratory virus with limited availability of antiviral therapies. Understanding host proteins essential for IAV infection can identify targets for alternative host-directed therapies (HDTs). Using affinity purification-mass spectrometry and global phosphoproteomic and protein abundance analyses using three IAV strains (pH1N1, H3N2, H5N1) in three human cell types (A549, NHBE, THP-1), we map 332 IAV-human protein-protein interactions and identify 13 IAV-modulated kinases. Whole exome sequencing of patients who experienced severe influenza reveals several genes, including scaffold protein AHNAK, with predicted loss-of-function variants that are also identified in our proteomic analyses. Of our identified host factors, 54 significantly alter IAV infection upon siRNA knockdown, and two factors, AHNAK and coatomer subunit COPB1, are also essential for productive infection by SARS-CoV-2. Finally, 16 compounds targeting our identified host factors suppress IAV replication, with two targeting CDK2 and FLT3 showing pan-antiviral activity across influenza and coronavirus families. This study provides a comprehensive network model of IAV infection in human cells, identifying functional host targets for pan-viral HDT.


Subject(s)
COVID-19 , Influenza A Virus, H5N1 Subtype , Influenza A virus , Influenza, Human , Humans , Influenza A virus/genetics , Influenza, Human/genetics , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H3N2 Subtype/metabolism , Proteomics , Virus Replication/genetics , SARS-CoV-2 , Antiviral Agents/metabolism , Host-Pathogen Interactions/genetics
2.
Int J Mol Sci ; 20(1)2018 Dec 28.
Article in English | MEDLINE | ID: mdl-30597831

ABSTRACT

As multicellular organisms grow, spatial and temporal patterns of gene expression are strictly regulated to ensure that developmental programs are invoked at appropriate stages. In this work, we describe a putative transcriptional regulator in Arabidopsis, TACO LEAF (TCO), whose overexpression results in the ectopic activation of reproductive genes during vegetative growth. Isolated as an activation-tagged allele, tco-1D displays gene misexpression and phenotypic abnormalities, such as curled leaves and early flowering, characteristic of chromatin regulatory mutants. A role for TCO in this mode of transcriptional regulation is further supported by the subnuclear accumulation patterns of TCO protein and genetic interactions between tco-1D and chromatin modifier mutants. The endogenous expression pattern of TCO and gene misregulation in tco loss-of-function mutants indicate that this factor is involved in seed development. We also demonstrate that specific serine residues of TCO protein are targeted by the ubiquitous kinase CK2. Collectively, these results identify TCO as a novel regulator of gene expression whose activity is likely influenced by phosphorylation, as is the case with many chromatin regulators.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Casein Kinase II/metabolism , Gene Expression Regulation, Plant , Transcription Factors/metabolism , Amino Acid Sequence , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Chromatin/genetics , Chromatin/metabolism , Ectopic Gene Expression , Fluorescent Antibody Technique , Mutation , Organ Specificity/genetics , Phenotype , Phosphorylation , Promoter Regions, Genetic , Protein Binding , Reproduction/genetics , Seeds/genetics , Seeds/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...