Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Exp Physiol ; 108(12): 1500-1515, 2023 12.
Article in English | MEDLINE | ID: mdl-37742137

ABSTRACT

NEW FINDINGS: What is the central question of this study? Gonadal hormones modulate cerebrovascular function while insulin-like growth factor 1 (IGF-1) facilitates exercise-mediated cerebral angiogenesis; puberty is a critical period of neurodevelopment alongside elevated gonadal hormone and IGF-1 activity: but whether exercise training across puberty enhances cerebrovascular function is unkown. What is the main finding and its importance? Cerebral blood flow is elevated in endurance trained adolescent males when compared to untrained counterparts. However, cerebrovascular reactivity to hypercapnia is faster in trained vs. untrained children, but not adolescents. Exercise-induced improvements in cerebrovascular function are attainable as early as the first decade of life. ABSTRACT: Global cerebral blood flow (gCBF) and cerebrovascular reactivity to hypercapnia ( CV R C O 2 ${\mathrm{CV}}{{\mathrm{R}}_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ ) are modulated by gonadal hormone activity, while insulin-like growth factor 1 facilitates exercise-mediated cerebral angiogenesis in adults. Whether critical periods of heightened hormonal and neural development during puberty represent an opportunity to further enhance gCBF and CV R C O 2 ${\mathrm{CV}}{{\mathrm{R}}_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ is currently unknown. Therefore, we used duplex ultrasound to assess gCBF and CV R C O 2 ${\mathrm{CV}}{{\mathrm{R}}_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ in n = 128 adolescents characterised as endurance-exercise trained (males: n = 30, females: n = 36) or untrained (males: n = 29, females: n = 33). Participants were further categorised as pre- (males: n = 35, females: n = 33) or post- (males: n = 24, females: n = 36) peak height velocity (PHV) to determine pubertal or 'maturity' status. Three-factor ANOVA was used to identify main and interaction effects of maturity status, biological sex and training status on gCBF and CV R C O 2 ${\mathrm{CV}}{{\mathrm{R}}_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ . Data are reported as group means (SD). Pre-PHV youth demonstrated elevated gCBF and slower CV R C O 2 ${\mathrm{CV}}{{\mathrm{R}}_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ mean response times than post-PHV counterparts (both: P ≤ 0.001). gCBF was only elevated in post-PHV trained males when compared to untrained counterparts (634 (43) vs. 578 (46) ml min-1 ; P = 0.007). However, CV R C O 2 ${\mathrm{CV}}{{\mathrm{R}}_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ mean response time was faster in pre- (72 (20) vs. 95 (29) s; P ≤ 0.001), but not post-PHV (P = 0.721) trained youth when compared to untrained counterparts. Cardiorespiratory fitness was associated with gCBF in post-PHV youth (r2  = 0.19; P ≤ 0.001) and CV R C O 2 ${\mathrm{CV}}{{\mathrm{R}}_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ mean response time in pre-PHV youth (r2  = 0.13; P = 0.014). Higher cardiorespiratory fitness during adolescence can elevate gCBF while exercise training during childhood primes the development of cerebrovascular function, highlighting the importance of exercise training during the early stages of life in shaping the cerebrovascular phenotype.


Subject(s)
Hypercapnia , Insulin-Like Growth Factor I , Male , Adult , Child , Female , Humans , Adolescent , Exercise/physiology , Cerebrovascular Circulation/physiology , Gonadal Hormones
2.
Psychoneuroendocrinology ; 158: 106393, 2023 12.
Article in English | MEDLINE | ID: mdl-37774659

ABSTRACT

Medial temporal lobe (MTL) atrophy is correlated with risk and severity of Alzheimer disease (AD) pathology and cognitive decline. Increasing evidence suggest that oestrogens affect the aging of MTL structures. Here we investigate the relationship between reproductive hormone exposure, polygenic scores for AD risk and oestradiol concentration, MTL anatomy and cognitive performance in postmenopausal women. To this end, we used data from 10,924 female participants in the UK Biobank from whom brain MRI and genetic data were available. We fitted linear regression models to test whether the volume of structures comprising the MTL were predicted by a) timing related to menopause, b) the use and timing of hormone replacement therapy (HRT) and c) polygenic scores for AD risk and oestradiol concentration. Results showed that longer use of HRT was associated with larger parahippocampal volumes (2.53 mm3/year, p = 0.042). A later age of natural menopause, and a longer reproductive span, was associated with larger hippocampal (6.08 and 5.72 mm3/year, p = 0.0006 and 0.0005), parahippocampal (4.17 mm3 and 4.19 mm3/year, p = 0.00006 and 0.00001), amygdala (2.10 and 2.22 mm3/year, p = 0.028 and 0.01) and perirhinal cortical (2.56 and 2.95 mm3/year, p = 0.028 and 0.008) volumes. Superior prospective memory performance was associated with later age at natural menopause, and a longer reproductive span (ß = 0.05 and 0.05 respectively, p = 0.019 and 0.019). Polygenic scores for AD risk and for oestradiol concentration were not associated with MTL volume and did not interact with menopause-related factors to affect MTL structure. Our results suggest that HRT use did not have any detrimental effects on cognition or brain structure, whilst greater exposure to reproductive hormones across time is associated both with slightly larger volumes of specific MTL structures and marginally superior memory performance, independent of genetic risk for AD and genetic predisposition for higher oestradiol levels. However, the clinical utility of maintenance of oestrogens post-menopause for brain health and protection against cognitive decline is curtailed by the small effect sizes observed.


Subject(s)
Alzheimer Disease , Postmenopause , Humans , Female , Duration of Therapy , Temporal Lobe/pathology , Alzheimer Disease/pathology , Menopause , Magnetic Resonance Imaging , Estrogens , Estradiol
3.
Front Neurosci ; 16: 795683, 2022.
Article in English | MEDLINE | ID: mdl-35873811

ABSTRACT

The thigh-cuff release (TCR) maneuver is a physiological challenge that is widely used to assess dynamic cerebral autoregulation (dCA). It is often applied in conjunction with Transcranial Doppler ultrasound (TCD), which provides temporal information of the global flow response in the brain. This established method can only yield very limited insights into the regional variability of dCA, whereas functional MRI (fMRI) has the ability to reveal the spatial distribution of flow responses in the brain with high spatial resolution. The aim of this study was to use whole-brain blood-oxygenation-level-dependent (BOLD) fMRI to characterize the spatiotemporal dynamics of the flow response to the TCR challenge, and thus pave the way toward mapping dCA in the brain. We used a data driven approach to derive a novel basis set that was then used to provide a voxel-wise estimate of the TCR associated haemodynamic response function (HRF TCR ). We found that the HRF TCR evolves with a specific spatiotemporal pattern, with gray and white matter showing an asynchronous response, which likely reflects the anatomical structure of cerebral blood supply. Thus, we propose that TCR challenge fMRI is a promising method for mapping spatial variability in dCA, which will likely prove to be clinically advantageous.

4.
Brain Commun ; 2(1): fcaa044, 2020.
Article in English | MEDLINE | ID: mdl-32566927

ABSTRACT

The objective of this study was to determine whether a single session of exercise was sufficient to induce cerebral adaptations in individuals with Huntington's disease and to explore the time dynamics of any acute cerebrovascular response. In this case-control study, we employed arterial-spin labelling MRI in 19 Huntington's disease gene-positive participants (32-65 years, 13 males) and 19 controls (29-63 years, 10 males) matched for age, gender, body mass index and self-reported activity levels, to measure global and regional perfusion in response to 20 min of moderate-intensity cycling. Cerebral perfusion was measured at baseline and 15, 40 and 60 min after exercise cessation. Relative to baseline, we found that cerebral perfusion increased in patients with Huntington's disease yet was unchanged in control participants in the precentral gyrus (P = 0.016), middle frontal gyrus (P = 0.046) and hippocampus (P = 0.048) 40 min after exercise cessation (+15 to +32.5% change in Huntington's disease participants, -7.7 to 0.8% change in controls). The length of the disease-causing trinucleotide repeat expansion in the huntingtin gene predicted the change in the precentral gyrus (P = 0.03) and the intensity of the exercise intervention predicted hippocampal perfusion change in Huntington's disease participants (P < 0.001). In both groups, exercise increased hippocampal blood flow 60 min after exercise cessation (P = 0.039). These findings demonstrate the utility of acute exercise as a clinically sensitive experimental paradigm to modulate the cerebrovasculature. Twenty minutes of aerobic exercise induced transient cerebrovascular adaptations in the hippocampus and cortex selectively in Huntington's disease participants and likely represents latent neuropathology not evident at rest.

5.
Front Physiol ; 11: 360, 2020.
Article in English | MEDLINE | ID: mdl-32372976

ABSTRACT

This cross-sectional study investigated the effects of aerobic fitness on cerebrovascular function in the healthy brain. Gray matter cerebral blood flow (CBF) and cerebrovascular reactivity (CVR) were quantified in a sample of young adults within a normal fitness range. Based on existing Transcranial Doppler ultrasound and fMRI evidence, we predicted a positive relationship between fitness and resting gray matter CBF and CVR. Exploratory hypotheses that higher V . O2peak would be associated with higher GM volume and cognitive performance were also investigated. 20 adults underwent a V . O2peak test and a battery of cognitive tests. All subjects also underwent an MRI scan where multiple inversion time (MTI) pulsed arterial spin labeling (PASL) was used to quantify resting CBF and CVR to 5% CO2. Region of interest analysis showed a non-significant inverse correlation between whole-brain gray matter CBF and V . O2peak; r = -0.4, p = 0.08, corrected p (p') = 0.16 and a significant positive correlation between V . O2peak and whole-brain averaged gray matter CVR; r = 0.62, p = 0.003, p' = 0.006. Voxel-wise analysis revealed a significant inverse association between V . O2peak and resting CBF in the left and right thalamus, brainstem, right lateral occipital cortex, left intra-calcarine cortex and cerebellum. The results of this study suggest that aerobic fitness is associated with lower baseline CBF and greater CVR in young adults.

6.
Front Physiol ; 11: 428, 2020.
Article in English | MEDLINE | ID: mdl-32457648

ABSTRACT

The brain retains a lifelong ability to adapt through learning and in response to injury or disease-related damage, a process known as functional neuroplasticity. The neural energetics underlying functional brain plasticity have not been thoroughly investigated experimentally in the healthy human brain. A better understanding of the blood flow and metabolic changes that accompany motor skill acquisition, and which facilitate plasticity, is needed before subsequent translation to treatment interventions for recovery of function in disease. The aim of the current study was to characterize cerebral blood flow (CBF) and oxygen consumption (relative CMRO2) responses, using calibrated fMRI conducted in 20 healthy participants, during performance of a serial reaction time task which induces rapid motor adaptation. Regions of interest (ROIs) were defined from areas showing task-induced BOLD and CBF responses that decreased over time. BOLD, CBF and relative CMRO2 responses were calculated for each block of the task. Motor and somatosensory cortices and the cerebellum showed statistically significant positive responses to the task compared to baseline, but with decreasing amplitudes of BOLD, CBF, and CMRO2 response as the task progressed. In the cerebellum, there was a sustained positive BOLD response in the absence of a significant CMRO2 increase from baseline, for all but the first task blocks. This suggests that the brain may continue to elevate the supply energy even after CMRO2 has returned to near baseline levels. Relying on BOLD fMRI data alone in studies of plasticity may not reveal the nature of underlying metabolic responses and their changes over time. Calibrated fMRI approaches may offer a more complete picture of the energetic changes supporting plasticity and learning.

7.
Mov Disord ; 35(6): 937-946, 2020 06.
Article in English | MEDLINE | ID: mdl-32017180

ABSTRACT

BACKGROUND: Hypertension is a modifiable cardiovascular risk factor implicated in neurodegeneration and dementia risk. In Huntington's disease, a monogenic neurodegenerative disease, autonomic and vascular abnormalities have been reported. This study's objective was to examine the relationship between hypertension and disease severity and progression in Huntington's disease. METHODS: Using longitudinal data from the largest worldwide observational study of Huntington's disease (n = 14,534), we assessed the relationship between hypertension, disease severity, and rate of clinical progression in Huntington's disease mutation carriers. Propensity score matching was used to statistically match normotensive and hypertensive participants for age, sex, body mass index, ethnicity, and CAG length. RESULTS: Huntington's disease patients had a lower prevalence of hypertension compared with age-matched gene-negative controls. Huntington's disease patients with hypertension had worse cognitive function, a higher depression score, and more marked motor progression over time compared with Huntington's disease patients without hypertension. However, hypertensive patients taking antihypertensive medication had less motor, cognitive, and functional impairment than Huntington's disease patients with untreated hypertension and a later age of clinical onset compared with untreated hypertensive patients and normotensive individuals with Huntington's disease. CONCLUSIONS: We report the novel finding that hypertension and antihypertensive medication use are associated with altered disease severity, progression, and clinical onset in patients with Huntington's disease. These findings have implications for the management of hypertension in Huntington's disease and suggest that prospective studies of the symptomatic or disease-modifying potential of antihypertensives in neurodegenerative diseases are warranted. © 2020 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Antihypertensive Agents/therapeutic use , Huntington Disease/complications , Hypertension/drug therapy , Antihypertensive Agents/adverse effects , Disease Progression , Female , Humans , Huntington Disease/epidemiology , Huntington Disease/genetics , Hypertension/epidemiology , Male , Neurodegenerative Diseases , Prospective Studies
8.
Front Physiol ; 9: 1657, 2018.
Article in English | MEDLINE | ID: mdl-30519192

ABSTRACT

Exercise has been shown to induce cerebrovascular adaptations. However, the underlying temporal dynamics are poorly understood, and regional variation in the vascular response to exercise has been observed in the large cerebral arteries. Here, we sought to measure the cerebrovascular effects of a single 20-min session of moderate-intensity exercise in the one hour period immediately following exercise cessation. We employed transcranial Doppler (TCD) ultrasonography to measure cerebral blood flow velocity (CBFV) in the middle cerebral artery (MCAv) and posterior cerebral artery (PCAv) before, during, and following exercise. Additionally, we simultaneously measured cerebral blood flow (CBF) in the internal carotid artery (ICA) and vertebral artery (VA) before and up to one hour following exercise cessation using Duplex ultrasound. A hypercapnia challenge was used before and after exercise to examine exercise-induced changes in cerebrovascular reactivity (CVR). We found that MCAv and PCAv were significantly elevated during exercise (p = 4.81 × 10-5 and 2.40 × 10-4, respectively). A general linear model revealed that these changes were largely explained by the partial pressure of end-tidal CO2 and not a direct vascular effect of exercise. After exercise cessation, there was no effect of exercise on CBFV or CVR in the intracranial or extracranial arteries (all p > 0.05). Taken together, these data confirm that CBF is rapidly and uniformly regulated following exercise cessation in healthy young males.

9.
Sci Rep ; 6: 32423, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27581950

ABSTRACT

Huntington's disease (HD) is a genetically-determined neurodegenerative disease. Characterising neuropathology in mouse models of HD is commonly restricted to cross-sectional ex vivo analyses, beset by tissue fixation issues. In vivo longitudinal magnetic resonance imaging (MRI) allows for disease progression to be probed non-invasively. In the HdhQ150 mouse model of HD, in vivo MRI was employed at two time points, before and after the onset of motor signs, to assess brain macrostructure and white matter microstructure. Ex vivo MRI, immunohistochemistry, transmission electron microscopy and behavioural testing were also conducted. Global brain atrophy was found in HdhQ150 mice at both time points, with no neuropathological progression across time and a selective sparing of the cerebellum. In contrast, no white matter abnormalities were detected from the MRI images or electron microscopy images alike. The relationship between motor function and MR-based structural measurements was different for the HdhQ150 and wild-type mice, although there was no relationship between motor deficits and histopathology. Widespread neuropathology prior to symptom onset is consistent with patient studies, whereas the absence of white matter abnormalities conflicts with patient data. The myriad reasons for this inconsistency require further attention to improve the translatability from mouse models of disease.


Subject(s)
Brain/diagnostic imaging , Huntington Disease/diagnostic imaging , Psychomotor Disorders/diagnostic imaging , White Matter/diagnostic imaging , Animals , Atrophy , Body Weight , Brain/metabolism , Brain/pathology , Brain/physiopathology , Brain Mapping , Disease Models, Animal , Disease Progression , Gene Expression , Humans , Huntingtin Protein , Huntington Disease/genetics , Huntington Disease/pathology , Huntington Disease/physiopathology , Longitudinal Studies , Magnetic Resonance Imaging/methods , Male , Mice , Mice, Transgenic , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Psychomotor Disorders/genetics , Psychomotor Disorders/pathology , Psychomotor Disorders/physiopathology , Psychomotor Performance , Species Specificity , White Matter/metabolism
10.
J Neurosci Methods ; 265: 2-12, 2016 05 30.
Article in English | MEDLINE | ID: mdl-26335798

ABSTRACT

BACKGROUND: Huge advances have been made in understanding and addressing confounds in diffusion MRI data to quantify white matter microstructure. However, there has been a lag in applying these advances in clinical research. Some confounds are more pronounced in HD which impedes data quality and interpretability of patient-control differences. This study presents an optimised analysis pipeline and addresses specific confounds in a HD patient cohort. METHOD: 15 HD gene-positive and 13 matched control participants were scanned on a 3T MRI system with two diffusion MRI sequences. An optimised post processing pipeline included motion, eddy current and EPI correction, rotation of the B matrix, free water elimination (FWE) and tractography analysis using an algorithm capable of reconstructing crossing fibres. The corpus callosum was examined using both a region-of-interest and a deterministic tractography approach, using both conventional diffusion tensor imaging (DTI)-based and spherical deconvolution analyses. RESULTS: Correcting for CSF contamination significantly altered microstructural metrics and the detection of group differences. Reconstructing the corpus callosum using spherical deconvolution produced a more complete reconstruction with greater sensitivity to group differences, compared to DTI-based tractography. Tissue volume fraction (TVF) was reduced in HD participants and was more sensitive to disease burden compared to DTI metrics. CONCLUSION: Addressing confounds in diffusion MR data results in more valid, anatomically faithful white matter tract reconstructions with reduced within-group variance. TVF is recommended as a complementary metric, providing insight into the relationship with clinical symptoms in HD not fully captured by conventional DTI metrics.


Subject(s)
Algorithms , Corpus Callosum/diagnostic imaging , Diffusion Magnetic Resonance Imaging/methods , Huntington Disease/diagnostic imaging , White Matter/diagnostic imaging , Artifacts , Cohort Studies , Cost of Illness , Diffusion Tensor Imaging , Female , Fingers/physiopathology , Humans , Huntington Disease/cerebrospinal fluid , Huntington Disease/physiopathology , Male , Middle Aged , Motor Activity , Organ Size , Reproducibility of Results , Severity of Illness Index
11.
J Huntingtons Dis ; 4(2): 149-60, 2015.
Article in English | MEDLINE | ID: mdl-26397896

ABSTRACT

BACKGROUND: Environmental enrichment has been shown to improve symptoms and reduce neuropathology in mouse models of Huntington's disease (HD); however results are limited to ex vivo techniques with associated shortcomings. In-vivo magnetic resonance imaging (MRI) can overcome some of the shortcomings and is applied for the first time here to assess the effect of a cognitive intervention in a mouse model of HD. OBJECTIVES: We aimed to investigate whether in-vivo high-field MRI can detect a disease-modifying effect in tissue macrostructure following a cognitive enrichment regime. METHODS: YAC128 transgenic and wild type mice were exposed to cognitive enrichment throughout their lifetime. At 20-months old, mice were scanned with a T2-weighted MRI sequence and a region-of-interest (ROI) approach was used to examine structural changes. Locomotor activity and performance on the rotarod and serial discrimination watermaze task were assessed to measure motor and cognitive function respectively. RESULTS: Mice exposed to cognitive enrichment were more active and able to stay on a rotating rod longer compared to control mice, with comparable rotarod performance between HD enriched mice and wild-type mice. YAC128 mice demonstrated cognitive impairments which were not improved by cognitive enrichment. In-vivo MRI revealed a reduction in the degree of caudate-putamen atrophy in the enriched HD mice. CONCLUSIONS: We provide in vivo evidence of a beneficial effect of environmental enrichment on neuropathology and motor function in a HD mouse model. This demonstrates the efficacy of MRI in a model of HD and provides the basis for an in-vivo non-destructive outcome measure necessary for longitudinal study designs to understand the effect of enrichment with disease progression.


Subject(s)
Behavior, Animal , Cognition/physiology , Environment , Huntington Disease/pathology , Huntington Disease/psychology , Animals , Disease Models, Animal , Female , Magnetic Resonance Imaging , Male , Maze Learning/physiology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Motor Activity , Psychomotor Performance/physiology , Rotarod Performance Test
SELECTION OF CITATIONS
SEARCH DETAIL
...