Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
bioRxiv ; 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37961223

ABSTRACT

Tumor-infiltrating macrophages support critical steps in tumor progression, and their accumulation in the tumor microenvironment (TME) is associated with adverse outcomes and therapeutic resistance across human cancers. In the TME, macrophages adopt diverse phenotypic alterations, giving rise to heterogeneous immune activation states and induction of cell cycle. While the transcriptional profiles of these activation states are well-annotated across human cancers, the underlying signals that regulate macrophage heterogeneity and accumulation remain incompletely understood. Here, we leveraged a novel ex vivo organotypic TME (oTME) model of breast cancer, in vivo murine models, and human samples to map the determinants of functional heterogeneity of TME macrophages. We identified a subset of F4/80highSca-1+ self-renewing macrophages maintained by type-I interferon (IFN) signaling and requiring physical contact with cancer-associated fibroblasts. We discovered that the contact-dependent self-renewal of TME macrophages is mediated via Notch4, and its inhibition abrogated tumor growth of breast and ovarian carcinomas in vivo, as well as lung dissemination in a PDX model of triple-negative breast cancer (TNBC). Through spatial multi-omic profiling of protein markers and transcriptomes, we found that the localization of macrophages further dictates functionally distinct but reversible phenotypes, regardless of their ontogeny. Whereas immune-stimulatory macrophages (CD11C+CD86+) populated the tumor epithelial nests, the stroma-associated macrophages (SAMs) were proliferative, immunosuppressive (Sca-1+CD206+PD-L1+), resistant to CSF-1R depletion, and associated with worse patient outcomes. Notably, following cessation of CSF-1R depletion, macrophages rebounded primarily to the SAM phenotype, which was associated with accelerated growth of mammary tumors. Our work reveals the spatial determinants of macrophage heterogeneity in breast cancer and highlights the disruption of macrophage self-renewal as a potential new therapeutic strategy.

2.
JAMA Netw Open ; 6(2): e2254221, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36729457

ABSTRACT

Importance: Clonal hematopoiesis (CH) has been associated with development of atherosclerosis and leukemia and worse survival among patients with cancer; however, the association with cancer therapy efficacy, in particular immune checkpoint blockade (ICB), and toxicity has not yet been established. Given the widespread use of ICB and the critical role hematopoietic stem cell-derived lymphocytes play in mediating antitumor responses, CH may be associated with therapeutic efficacy and hematologic toxicity. Objective: To determine the association between CH and outcomes, hematologic toxicity, and therapeutic efficacy in patients with metastatic gastrointestinal tract cancers being treated with systemic therapy, both in the first-line metastatic treatment setting and in ICB. Design, Setting, and Participants: This retrospective cohort study included 633 patients with stage IV colorectal (CRC) and esophagogastric (EGC) cancer who were treated with first-line chemotherapy and/or ICB at Memorial Sloan Kettering Cancer Center. Patients underwent matched tumor and peripheral blood DNA sequencing using the Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets next-generation sequencing assay between January 1, 2006, and December 31, 2020. Exposures: Clonal hematopoiesis-related genetic alterations were identified by next-generation sequencing of patients' tumor and normal blood buffy coat samples, with a subset of these CH alterations annotated as likely putative drivers (CH-PD) based upon previously established criteria. Main Outcomes and Measures: Patients with CH and CH-PD in peripheral blood samples were identified, and these findings were correlated with survival outcomes (progression-free survival [PFS] and overall survival [OS]) during first-line chemotherapy and ICB, as well as baseline white blood cell levels and the need for granulocyte colony-stimulating factor (G-CSF) support. Results: Among the 633 patients included in the study (390 men [61.6%]; median age, 58 [IQR, 48-66] years), the median age was 52 (IQR, 45-63) years in the CRC group and 61 (IQR, 53-69) years in the EGC group. In the CRC group, 161 of 301 patients (53.5%) were men, compared with 229 of 332 patients (69.0%) in the EGC group. Overall, 62 patients (9.8%) were Asian, 45 (7.1%) were Black or African American, 482 (76.1%) were White, and 44 (7.0%) were of unknown race or ethnicity. Presence of CH was identified in 115 patients with EGC (34.6%) and 83 with CRC (27.6%), with approximately half of these patients harboring CH-PD (CRC group, 44 of 83 [53.0%]; EGC group, 55 of 115 [47.8%]). Patients with EGC and CH-PD exhibited a significantly worse median OS of 16.0 (95% CI, 11.6-22.3) months compared with 21.6 (95% CI, 19.6-24.3) months for those without CH-PD (P = .01). For patients with CRC and EGC, CH and CH-PD were not associated with PFS differences in patients undergoing ICB or first-line chemotherapy. Neither CH nor CH-PD were correlated with baseline leukocyte levels or increased need for G-CSF support. Conclusions and Relevance: These findings suggest CH and CH-PD are not directly associated with the treatment course of patients with metastatic gastrointestinal tract cancer receiving cancer-directed therapy.


Subject(s)
Gastrointestinal Neoplasms , Leukemia , Male , Humans , Middle Aged , Female , Retrospective Studies , Clonal Hematopoiesis , Clinical Relevance , Gastrointestinal Neoplasms/drug therapy , Gastrointestinal Neoplasms/genetics
3.
Nat Biotechnol ; 41(6): 788-793, 2023 06.
Article in English | MEDLINE | ID: mdl-36593397

ABSTRACT

Spatial transcriptomics and proteomics provide complementary information that independently transformed our understanding of complex biological processes. However, experimental integration of these modalities is limited. To overcome this, we developed Spatial PrOtein and Transcriptome Sequencing (SPOTS) for high-throughput simultaneous spatial transcriptomics and protein profiling. Compared with unimodal measurements, SPOTS substantially improves signal resolution and cell clustering and enhances the discovery power in differential gene expression analysis across tissue regions.


Subject(s)
Gene Expression Profiling , Transcriptome , Transcriptome/genetics , Proteins , Proteomics , Cluster Analysis
4.
Nat Commun ; 13(1): 4953, 2022 08 23.
Article in English | MEDLINE | ID: mdl-35999207

ABSTRACT

Mutational signatures accumulate in somatic cells as an admixture of endogenous and exogenous processes that occur during an individual's lifetime. Since dividing cells release cell-free DNA (cfDNA) fragments into the circulation, we hypothesize that plasma cfDNA might reflect mutational signatures. Point mutations in plasma whole genome sequencing (WGS) are challenging to identify through conventional mutation calling due to low sequencing coverage and low mutant allele fractions. In this proof of concept study of plasma WGS at 0.3-1.5x coverage from 215 patients and 227 healthy individuals, we show that both pathological and physiological mutational signatures may be identified in plasma. By applying machine learning to mutation profiles, patients with stage I-IV cancer can be distinguished from healthy individuals with an Area Under the Curve of 0.96. Interrogating mutational processes in plasma may enable earlier cancer detection, and might enable the assessment of cancer risk and etiology.


Subject(s)
Cell-Free Nucleic Acids , Neoplasms , Cell-Free Nucleic Acids/genetics , Genome, Human/genetics , High-Throughput Nucleotide Sequencing , Humans , Mutation , Neoplasms/genetics , Whole Genome Sequencing
5.
Clin Cancer Res ; 28(1): 45-56, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34615723

ABSTRACT

PURPOSE: Activation of Bruton tyrosine kinase (BTK) and phosphatidylinositol-3-kinase (PI3K) represent parallel, synergistic pathways in lymphoma pathogenesis. As predominant PI3Kδ inhibition is a possible mechanism of tumor escape, we proposed a clinical trial of dual BTK and pan-PI3K inhibition. PATIENTS AND METHODS: We conducted a single-center phase I/Ib trial combining a BTK inhibitor (ibrutinib) and a pan-PI3K inhibitor (buparlisib) in 37 patients with relapsed/refractory (R/R) B-cell lymphoma. Buparlisib and ibrutinib were administered orally, once daily in 28-day cycles until progression or unacceptable toxicity. The clinical trial is registered with clinicaltrials.gov, NCT02756247. RESULTS: Patients with mantle cell lymphoma (MCL) receiving the combination had a 94% overall response rate (ORR) and 33-month median progression-free survival; ORR of 31% and 20% were observed in patients with diffuse large B-cell lymphoma and follicular lymphoma, respectively. The maximum tolerated dose was ibrutinib 560 mg plus buparlisib 100 mg and the recommended phase II dose was ibrutinib 560 mg plus buparlisib 80 mg. The most common grade 3 adverse events were rash/pruritis/dermatitis (19%), diarrhea (11%), hyperglycemia (11%), and hypertension (11%). All grade mood disturbances ranging from anxiety, depression, to agitation were observed in 22% of patients. Results from serial monitoring of cell-free DNA samples corresponded to radiographic resolution of disease and tracked the emergence of mutations known to promote BTK inhibitor resistance. CONCLUSIONS: BTK and pan-PI3K inhibition in mantle cell lymphoma demonstrates a promising efficacy signal. Addition of BCL2 inhibitors to a BTK and pan-PI3K combination remain suitable for further development in mantle cell lymphoma.


Subject(s)
Cell-Free Nucleic Acids , Lymphoma, Large B-Cell, Diffuse , Lymphoma, Mantle-Cell , Adenine/analogs & derivatives , Adult , Aminopyridines , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Humans , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Mantle-Cell/drug therapy , Lymphoma, Mantle-Cell/genetics , Lymphoma, Mantle-Cell/pathology , Morpholines , Phosphatidylinositol 3-Kinases , Piperidines , Pyrazoles , Pyrimidines
6.
Cancer Med ; 9(17): 6093-6101, 2020 09.
Article in English | MEDLINE | ID: mdl-32633890

ABSTRACT

PURPOSE: The enucleation rate for retinoblastoma has dropped from over 95% to under 10% in the past 10 years as a result of improvements in therapy. This reduces access to tumor tissue for molecular profiling, especially in unilateral retinoblastoma, and hinders the confirmation of somatic RB1 mutations necessary for genetic counseling. Plasma cell-free DNA (cfDNA) has provided a platform for noninvasive molecular profiling in cancer, but its applicability in low tumor burden retinoblastoma has not been shown. We analyzed cfDNA collected from 10 patients with available tumor tissue to determine whether sufficient tumorderived cfDNA is shed in plasma from retinoblastoma tumors to enable noninvasive RB1 mutation detection. METHODS: Tumor tissue was collected from eye enucleations in 10 patients diagnosed with advanced intra-ocular unilateral retinoblastoma, three of which went on to develop metastatic disease. Tumor RB1 mutation status was determined using an FDA-cleared tumor sequencing assay, MSK-IMPACT. Plasma samples were collected before eye enucleation and analyzed with a customized panel targeting all exons of RB1. RESULTS: Tumor-guided genotyping detected 10 of the 13 expected somatic RB1 mutations in plasma cfDNA in 8 of 10 patients (average variant allele frequency 3.78%). Without referring to RB1 status in the tumor, de novo mutation calling identified 7 of the 13 expected RB1 mutations (in 6 of 10 patients) with high confidence. CONCLUSION: Plasma cfDNA can detect somatic RB1 mutations in patients with unilateral retinoblastoma. Since intraocular biopsies are avoided in these patients because of concern about spreading tumor, cfDNA can potentially offer a noninvasive platform to guide clinical decisions about treatment, follow-up schemes, and risk of metastasis.


Subject(s)
Circulating Tumor DNA/genetics , Genes, Retinoblastoma/genetics , Retinal Neoplasms/genetics , Retinoblastoma/genetics , Cancer Care Facilities , Child, Preschool , Circulating Tumor DNA/blood , DNA Mutational Analysis/methods , Exons/genetics , Eye Enucleation , Feasibility Studies , Genotyping Techniques , Humans , Infant , Infant, Newborn , New York City , Retinal Neoplasms/blood , Retinal Neoplasms/therapy , Retinoblastoma/blood , Retinoblastoma/therapy
7.
Cancer Genet ; 228-229: 169-179, 2018 12.
Article in English | MEDLINE | ID: mdl-29625863

ABSTRACT

Cell-free DNA (cfDNA) was first identified in human plasma in 1948 and is thought to be released from cells throughout the body into the circulatory system. In cancer, a portion of the cfDNA originates from tumour cells, referred to as circulating-tumour DNA (ctDNA), and can contain mutations corresponding to the patient's tumour, for instance specific TP53 alleles. Profiling of cfDNA has recently become an area of increasing clinical relevance in oncology, in particular due to advances in the sensitivity of molecular biology techniques and development of next generation sequencing technologies, as this allows tumour mutations to be identified and tracked non-invasively. This has opened up new possibilities for monitoring tumour evolution and acquisition of resistance, as well as for guiding treatment decisions when tumour biopsy tissue is insufficient or unavailable. In this review, we will discuss the biology of cell-free nucleic acids, methods of analysis, and the potential clinical uses of these techniques, as well as the on-going clinical development of ctDNA assays.


Subject(s)
Cell-Free Nucleic Acids/blood , Neoplasms/blood , Neoplasms/genetics , DNA, Neoplasm/genetics , High-Throughput Nucleotide Sequencing , Humans , Polymerase Chain Reaction/methods
8.
J Pathol ; 244(5): 616-627, 2018 04.
Article in English | MEDLINE | ID: mdl-29380875

ABSTRACT

Over the past decade, advances in molecular biology and genomics techniques have revolutionized the diagnosis and treatment of cancer. The technological advances in tissue profiling have also been applied to the study of cell-free nucleic acids, an area of increasing interest for molecular pathology. Cell-free nucleic acids are released from tumour cells into the surrounding body fluids and can be assayed non-invasively. The repertoire of genomic alterations in circulating tumour DNA (ctDNA) is reflective of both primary tumours and distant metastatic sites, and ctDNA can be sampled multiple times, thereby overcoming the limitations of the analysis of single biopsies. Furthermore, ctDNA can be sampled regularly to monitor response to treatment, to define the evolution of the tumour genome, and to assess the acquisition of resistance and minimal residual disease. Recently, clinical ctDNA assays have been approved for guidance of therapy, which is an exciting first step in translating cell-free nucleic acid research tests into clinical use for oncology. In this review, we discuss the advantages of cell-free nucleic acids as analytes in different body fluids, including blood plasma, urine, and cerebrospinal fluid, and their clinical applications in solid tumours and haematological malignancies. We will also discuss practical considerations for clinical deployment, such as preanalytical factors and regulatory requirements. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Biomarkers, Tumor/genetics , Circulating Tumor DNA/genetics , Genomics/methods , Neoplasms/genetics , Neoplasms/pathology , Pathology, Molecular/methods , Early Detection of Cancer/methods , Genetic Predisposition to Disease , Humans , Liquid Biopsy , Neoplasms/therapy , Phenotype , Predictive Value of Tests , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL
...