Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
Add more filters










Publication year range
1.
Ecology ; : e4329, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38772876

ABSTRACT

Hundreds of studies now document positive relationships between biodiversity and critical ecosystem processes, but as ecological communities worldwide shift toward new species configurations, less is known regarding how the biodiversity of undesirable species will shape the functioning of ecosystems or foundation species. We manipulated macroalgal species richness in experimental field plots to test whether and how the identity and diversity of competing macroalgae affected the growth, survival, and microbiome of a common coral in Mo'orea, French Polynesia. Compared to controls without algal competitors, coral growth was significantly suppressed across three macroalgal monocultures, a polyculture of the same three macroalgae, and plots containing inert seaweed mimics; coral mortality was limited and did not differ significantly among treatments. One macroalga suppressed coral growth significantly less than the other two, but none differed from the inert mimic in terms of coral suppression. The composition, dispersion, and diversity of coral microbiomes in treatments with live macroalgae or inert plastic mimics did not differ from controls experiencing no competition. Microbiome composition differed between two macroalgal monocultures and a monoculture versus plastic mimics, but no other microbiome differences were observed among macroalgal or mimic treatments. Together, these findings suggest that algal diversity does not alter harmful impacts of macroalgae on coral performance, which could be accounted for by physical structure alone in these field experiments. While enhancing biodiversity is a recognized strategy for promoting desirable species, it would be worrisome if biodiversity also enhanced the negative impacts of undesirable species. We documented no such effects in this investigation.

2.
Appl Environ Microbiol ; 90(4): e0209923, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38445905

ABSTRACT

Marine oxygen-deficient zones (ODZs) are portions of the ocean where intense nitrogen loss occurs primarily via denitrification and anammox. Despite many decades of study, the identity of the microbes that catalyze nitrogen loss in ODZs is still being elucidated. Intriguingly, high transcription of genes in the same family as the nitric oxide dismutase (nod) gene from Methylomirabilota has been reported in the anoxic core of ODZs. Here, we show that the most abundantly transcribed nod genes in the Eastern Tropical North Pacific ODZ belong to a new order (UBA11136) of Alphaproteobacteria, rather than Methylomirabilota as previously assumed. Gammaproteobacteria and Planctomycetia also transcribe nod, but at lower relative abundance than UBA11136 in the upper ODZ. The nod-transcribing Alphaproteobacteria likely use formaldehyde and formate as a source of electrons for aerobic respiration, with additional electrons possibly from sulfide oxidation. They also transcribe multiheme cytochrome (here named ptd) genes for a putative porin-cytochrome protein complex of unknown function, potentially involved in extracellular electron transfer. Molecular oxygen for aerobic respiration may originate from nitric oxide dismutation via cryptic oxygen cycling. Our results implicate Alphaproteobacteria order UBA11136 as a significant player in marine nitrogen loss and highlight their potential in one-carbon, nitrogen, and sulfur metabolism in ODZs.IMPORTANCEIn marine oxygen-deficient zones (ODZs), microbes transform bioavailable nitrogen to gaseous nitrogen, with nitric oxide as a key intermediate. The Eastern Tropical North Pacific contains the world's largest ODZ, but the identity of the microbes transforming nitric oxide remains unknown. Here, we show that highly transcribed nitric oxide dismutase (nod) genes belong to Alphaproteobacteria of the novel order UBA11136, which lacks cultivated isolates. These Alphaproteobacteria show evidence for aerobic respiration, using oxygen potentially sourced from nitric oxide dismutase, and possess a novel porin-cytochrome protein complex with unknown function. Gammaproteobacteria and Planctomycetia transcribe nod at lower levels. Our results pinpoint the microbes mediating a key step in marine nitrogen loss and reveal an unexpected predicted metabolism for marine Alphaproteobacteria.


Subject(s)
Alphaproteobacteria , Gammaproteobacteria , Alphaproteobacteria/genetics , Alphaproteobacteria/metabolism , Nitric Oxide/metabolism , Bacteria/genetics , Oxygen/metabolism , Gammaproteobacteria/genetics , Gammaproteobacteria/metabolism , Cytochromes/metabolism , Nitrogen/metabolism , Porins/metabolism , Oxidation-Reduction , Seawater/microbiology , Denitrification
3.
Nat Commun ; 15(1): 1338, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38409274

ABSTRACT

Coral reefs are in global decline with coral diseases playing a significant role. This is especially true for Acroporid corals that represent ~25% of all Pacific coral species and generate much of the topographic complexity supporting reef biodiversity. Coral diseases are commonly sediment-associated and could be exacerbated by overharvest of sea cucumber detritivores that clean reef sediments and may suppress microbial pathogens as they feed. Here we show, via field manipulations in both French Polynesia and Palmyra Atoll, that historically overharvested sea cucumbers strongly suppress disease among corals in contact with benthic sediments. Sea cucumber removal increased tissue mortality of Acropora pulchra by ~370% and colony mortality by ~1500%. Additionally, farmerfish that kill Acropora pulchra bases to culture their algal gardens further suppress disease by separating corals from contact with the disease-causing sediment-functioning as mutualists rather than parasites despite killing coral bases. Historic overharvesting of sea cucumbers increases coral disease and threatens the persistence of tropical reefs. Enhancing sea cucumbers may enhance reef resilience by suppressing disease.


Subject(s)
Anthozoa , Sea Cucumbers , Animals , Coral Reefs , Biodiversity , Polynesia , Ecosystem
4.
ISME Commun ; 3(1): 111, 2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37848489

ABSTRACT

Larval net-spinning caddisflies (Hydropsychidae) function as ecosystem engineers in streams where they construct protective retreats composed of organic and inorganic material affixed with silk filtration nets that alter streambed hydrology. We hypothesized that hydropsychid bio-structures (retreats, nets) are microhabitats for microbes with oxygen-sensitive metabolisms, and therefore increase the metabolic heterogeneity of streambed microbial assemblages. Metagenomic and 16 S rRNA gene amplicon analysis of samples from a montane stream (Cherry Creek, Montana, USA) revealed that microbiomes of caddisfly bio-structures are taxonomically and functionally distinct from those of the immediately adjacent rock biofilm (~2 cm distant) and enriched in microbial taxa with established roles in denitrification, nitrification, and methane production. Genes for denitrification, high oxygen affinity terminal oxidases, hydrogenases, oxidative dissimilatory sulfite reductases, and complete ammonia oxidation are significantly enriched in caddisfly bio-structures. The results suggest a novel ecosystem engineering effect of caddisflies through the creation of low-oxygen, denitrifier-enriched niches in the stream microbiome. Facilitation of metabolic diversity in streambeds may be a largely unrecognized mechanism by which caddisflies alter whole-stream biogeochemistry.

5.
Sci Rep ; 13(1): 16679, 2023 10 04.
Article in English | MEDLINE | ID: mdl-37794122

ABSTRACT

Animals under managed care in zoos and aquariums are ideal surrogate study subjects for endangered species that are difficult to obtain in the wild. We compared the fecal and oral microbiomes of healthy, managed African penguins (Spheniscus demersus) to those of other domestic and wild vertebrate hosts to determine how host identity, diet, and environment shape the penguin microbiome. The African penguin oral microbiome was more similar to that of piscivorous marine mammals, suggesting that diet and a marine environment together play a strong role in shaping the oral microbiome. Conversely, the penguin cloaca/fecal microbiome was more similar to that of other birds, suggesting that host phylogeny plays a significant role in shaping the gut microbiome. Although the penguins were born under managed care, they had a gut microbiome more similar to that of wild bird species compared to domesticated (factory-farmed) birds, suggesting that the managed care environment and diet resemble those experienced by wild birds. Finally, the microbiome composition at external body sites was broadly similar to that of the habitat, suggesting sharing of microbes between animals and their environment. Future studies should link these results to microbial functional capacity and host health, which will help inform conservation efforts.


Subject(s)
Gastrointestinal Microbiome , Spheniscidae , Humans , Animals , Vertebrates , Endangered Species , Mammals
6.
Sci Data ; 10(1): 332, 2023 05 27.
Article in English | MEDLINE | ID: mdl-37244914

ABSTRACT

Oxygen-deficient marine waters referred to as oxygen minimum zones (OMZs) or anoxic marine zones (AMZs) are common oceanographic features. They host both cosmopolitan and endemic microorganisms adapted to low oxygen conditions. Microbial metabolic interactions within OMZs and AMZs drive coupled biogeochemical cycles resulting in nitrogen loss and climate active trace gas production and consumption. Global warming is causing oxygen-deficient waters to expand and intensify. Therefore, studies focused on microbial communities inhabiting oxygen-deficient regions are necessary to both monitor and model the impacts of climate change on marine ecosystem functions and services. Here we present a compendium of 5,129 single-cell amplified genomes (SAGs) from marine environments encompassing representative OMZ and AMZ geochemical profiles. Of these, 3,570 SAGs have been sequenced to different levels of completion, providing a strain-resolved perspective on the genomic content and potential metabolic interactions within OMZ and AMZ microbiomes. Hierarchical clustering confirmed that samples from similar oxygen concentrations and geographic regions also had analogous taxonomic compositions, providing a coherent framework for comparative community analysis.


Subject(s)
Genome, Archaeal , Genome, Bacterial , Bacteria/genetics , Bacteria/metabolism , Genomics , Microbiota , Oxygen , Seawater/microbiology , Archaea/genetics , Archaea/metabolism , Single-Cell Analysis
7.
mSystems ; 8(2): e0109522, 2023 04 27.
Article in English | MEDLINE | ID: mdl-36920198

ABSTRACT

Nutrient availability can significantly influence microbial genomic and proteomic streamlining, for example, by selecting for lower nitrogen to carbon ratios. Oligotrophic open ocean microbes have streamlined genomic nitrogen requirements relative to those of their counterparts in nutrient-rich coastal waters. However, steep gradients in nutrient availability occur at meter-level, and even micron-level, spatial scales. It is unclear whether such gradients also structure genomic and proteomic stoichiometry. Focusing on the eastern tropical North Pacific oxygen minimum zone (OMZ), we use comparative metagenomics to examine how nitrogen availability shapes microbial and viral genome properties along the vertical gradient across the OMZ and between two size fractions, distinguishing free-living microbes versus particle-associated microbes. We find a substantial increase in the nitrogen content of encoded proteins in particle-associated over free-living bacteria and archaea across nitrogen availability regimes over depth. Within each size fraction, we find that bacterial and viral genomic nitrogen tends to increase with increasing nitrate concentrations with depth. In contrast to cellular genes, the nitrogen content of virus proteins does not differ between size fractions. We identified arginine as a key amino acid in the modulation of the C:N ratios of core genes for bacteria, archaea, and viruses. Functional analysis reveals that particle-associated bacterial metagenomes are enriched for genes that are involved in arginine metabolism and organic nitrogen compound catabolism. Our results are consistent with nitrogen streamlining in both cellular and viral genomes on spatial scales of meters to microns. These effects are similar in magnitude to those previously reported across scales of thousands of kilometers. IMPORTANCE The genomes of marine microbes can be shaped by nutrient cycles, with ocean-scale gradients in nitrogen availability being known to influence microbial amino acid usage. It is unclear, however, how genomic properties are shaped by nutrient changes over much smaller spatial scales, for example, along the vertical transition into oxygen minimum zones (OMZs) or from the exterior to the interior of detrital particles. Here, we measure protein nitrogen usage by marine bacteria, archaea, and viruses by using metagenomes from the nitracline of the eastern tropical North Pacific OMZ, including both particle-associated and nonassociated biomass. Our results show higher genomic and proteomic nitrogen content in particle-associated microbes and at depths with higher nitrogen availability for cellular and viral genomes. This discovery suggests that stoichiometry influences microbial and viral evolution across multiple scales, including the micrometer to millimeter scale associated with particle-associated versus free-living lifestyles.


Subject(s)
Proteome , Seawater , Seawater/chemistry , Proteome/genetics , Proteomics , Oxygen/analysis , Nitrogen/metabolism , Bacteria/genetics , Archaea/genetics , Genome, Viral/genetics , Amino Acids/genetics
8.
Anim Microbiome ; 4(1): 34, 2022 May 23.
Article in English | MEDLINE | ID: mdl-35606841

ABSTRACT

BACKGROUND: Animal-associated microbiomes can be influenced by both host and environmental factors. Comparing wild animals to those in zoos or aquariums can help disentangle the effects of host versus environmental factors, while also testing whether managed conditions foster a 'natural' host microbiome. Focusing on an endangered elasmobranch species-the whitespotted eagle ray Aetobatus narinari-we compared the skin, gill, and cloaca microbiomes of wild individuals to those at Georgia Aquarium. Whitespotted eagle ray microbiomes from Georgia Aquarium were also compared to those of cownose rays (Rhinoptera bonasus) in the same exhibit, allowing us to explore the effect of host identity on the ray microbiome. RESULTS: Long-term veterinary monitoring indicated that the rays in managed care did not have a history of disease and maintained health parameters consistent with those of wild individuals, with one exception. Aquarium whitespotted eagle rays were regularly treated to control parasite loads, but the effects on animal health were subclinical. Microbiome α- and ß-diversity differed between wild versus aquarium whitespotted eagle rays at all body sites, with α-diversity significantly higher in wild individuals. ß-diversity differences in wild versus aquarium whitespotted eagle rays were greater for skin and gill microbiomes compared to those of the cloaca. At each body site, we also detected microbial taxa shared between wild and aquarium eagle rays. Additionally, the cloaca, skin, and gill microbiomes of aquarium eagle rays differed from those of cownose rays in the same exhibit. Potentially pathogenic bacteria were at low abundance in all wild and aquarium rays. CONCLUSION: For whitespotted eagle rays, managed care was associated with a microbiome differing significantly from that of wild individuals. These differences were not absolute, as the microbiome of aquarium rays shared members with that of wild counterparts and was distinct from that of a cohabitating ray species. Eagle rays under managed care appear healthy, suggesting that their microbiomes are not associated with compromised host health. However, the ray microbiome is dynamic, differing with both environmental factors and host identity. Monitoring of aquarium ray microbiomes over time may identify taxonomic patterns that co-vary with host health.

9.
Environ Microbiol ; 24(5): 2361-2379, 2022 05.
Article in English | MEDLINE | ID: mdl-35415879

ABSTRACT

Coastal waters are a major source of marine methane to the atmosphere. Particularly high concentrations of this potent greenhouse gas are found in anoxic waters, but it remains unclear if and to what extent anaerobic methanotrophs mitigate the methane flux. Here we investigate the long-term dynamics in methanotrophic activity and the methanotroph community in the coastal oxygen minimum zone (OMZ) of Golfo Dulce, Costa Rica, combining biogeochemical analyses, experimental incubations and 16S rRNA gene sequencing over 3 consecutive years. Our results demonstrate a stable redox zonation across the years with high concentrations of methane (up to 1.7 µmol L-1 ) in anoxic bottom waters. However, we also measured high activities of anaerobic methane oxidation in the OMZ core (rate constant, k, averaging 30 yr-1 in 2018 and 8 yr-1 in 2019-2020). The OPU3 and Deep Sea-1 clades of the Methylococcales were implicated as conveyors of the activity, peaking in relative abundance 5-25 m below the oxic-anoxic interface and in the deep anoxic water respectively. Although their genetic capacity for anaerobic methane oxidation remains unexplored, their sustained high relative abundance indicates an adaptation of these clades to the anoxic, methane-rich OMZ environment, allowing them to play major roles in mitigating methane fluxes.


Subject(s)
Methane , Oxygen , Anaerobiosis , Oxidation-Reduction , RNA, Ribosomal, 16S/genetics
10.
Anim Microbiome ; 4(1): 17, 2022 Mar 04.
Article in English | MEDLINE | ID: mdl-35246276

ABSTRACT

BACKGROUND: Sharks play essential roles in ocean food webs and human culture, but also face population declines worldwide due to human activity. The relationship between sharks and the microbes on and in the shark body is unclear, despite research on other animals showing the microbiome as intertwined with host physiology, immunity, and ecology. Research on shark-microbe interactions faces the significant challenge of sampling the largest and most elusive shark species. We leveraged a unique sampling infrastructure to compare the microbiomes of two apex predators, the white (Carcharodon carcharias) and tiger shark (Galeocerdo cuvier), to those of the filter-feeding whale shark (Rhincodon typus), allowing us to explore the effects of feeding mode on intestinal microbiome diversity and metabolic function, and environmental exposure on the diversity of microbes external to the body (on the skin, gill). RESULTS: The fecal microbiomes of white and whale sharks were highly similar in taxonomic and gene category composition despite differences in host feeding mode and diet. Fecal microbiomes from these species were also taxon-poor compared to those of many other vertebrates and were more similar to those of predatory teleost fishes and toothed whales than to those of filter-feeding baleen whales. In contrast, microbiomes of external body niches were taxon-rich and significantly influenced by diversity in the water column microbiome. CONCLUSIONS: These results suggest complex roles for host identity, diet, and environmental exposure in structuring the shark microbiome and identify a small, but conserved, number of intestinal microbial taxa as potential contributors to shark physiology.

11.
ISME J ; 16(4): 972-982, 2022 04.
Article in English | MEDLINE | ID: mdl-34743175

ABSTRACT

Microbial communities in oxygen minimum zones (OMZs) are known to have significant impacts on global biogeochemical cycles, but viral influence on microbial processes in these regions are much less studied. Here we provide baseline ecological patterns using microscopy and viral metagenomics from the Eastern Tropical North Pacific (ETNP) OMZ region that enhance our understanding of viruses in these climate-critical systems. While extracellular viral abundance decreased below the oxycline, viral diversity and lytic infection frequency remained high within the OMZ, demonstrating that viral influences on microbial communities were still substantial without the detectable presence of oxygen. Viral community composition was strongly related to oxygen concentration, with viral populations in low-oxygen portions of the water column being distinct from their surface layer counterparts. However, this divergence was not accompanied by the expected differences in viral-encoded auxiliary metabolic genes (AMGs) relating to nitrogen and sulfur metabolisms that are known to be performed by microbial communities in these low-oxygen and anoxic regions. Instead, several abundant AMGs were identified in the oxycline and OMZ that may modulate host responses to low-oxygen stress. We hypothesize that this is due to selection for viral-encoded genes that influence host survivability rather than modulating host metabolic reactions within the ETNP OMZ. Together, this study shows that viruses are not only diverse throughout the water column in the ETNP, including the OMZ, but their infection of microorganisms has the potential to alter host physiological state within these biogeochemically important regions of the ocean.


Subject(s)
Microbiota , Viruses , Oxygen/metabolism , Seawater/chemistry , Viruses/genetics , Viruses/metabolism , Water
12.
Anim Microbiome ; 3(1): 61, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34526135

ABSTRACT

Elasmobranchs (sharks, skates and rays) are of broad ecological, economic, and societal value. These globally important fishes are experiencing sharp population declines as a result of human activity in the oceans. Research to understand elasmobranch ecology and conservation is critical and has now begun to explore the role of body-associated microbiomes in shaping elasmobranch health. Here, we review the burgeoning efforts to understand elasmobranch microbiomes, highlighting microbiome variation among gastrointestinal, oral, skin, and blood-associated niches. We identify major bacterial lineages in the microbiome, challenges to the field, key unanswered questions, and avenues for future work. We argue for prioritizing research to determine how microbiomes interact mechanistically with the unique physiology of elasmobranchs, potentially identifying roles in host immunity, disease, nutrition, and waste processing. Understanding elasmobranch-microbiome interactions is critical for predicting how sharks and rays respond to a changing ocean and for managing healthy populations in managed care.

13.
Environ Microbiol ; 23(8): 4646-4660, 2021 08.
Article in English | MEDLINE | ID: mdl-34190392

ABSTRACT

Gas hydrates harbour gigatons of natural gas, yet their microbiomes remain understudied. We bioprospected 16S rRNA amplicons, metagenomes, and metaproteomes from methane hydrate-bearing sediments under Hydrate Ridge (offshore Oregon, USA, ODP Site 1244, 2-69 mbsf) for novel microbial metabolic and biosynthetic potential. Atribacteria sequences generally increased in relative sequence abundance with increasing sediment depth. Most Atribacteria ASVs belonged to JS-1-Genus 1 and clustered with other sequences from gas hydrate-bearing sediments. We recovered 21 metagenome-assembled genomic bins spanning three geochemical zones in the sediment core: the sulfate-methane transition zone, the metal (iron/manganese) reduction zone, and the gas hydrate stability zone. We found evidence for bacterial fermentation as a source of acetate for aceticlastic methanogenesis and as a driver of iron reduction in the metal reduction zone. In multiple zones, we identified a Ni-Fe hydrogenase-Na+ /H+ antiporter supercomplex (Hun) in Atribacteria and Firmicutes bins and in other deep subsurface bacteria and cultured hyperthermophiles from the Thermotogae phylum. Atribacteria expressed tripartite ATP-independent transporters downstream from a novel regulator (AtiR). Atribacteria also possessed adaptations to survive extreme conditions (e.g. high salt brines, high pressure and cold temperatures) including the ability to synthesize the osmolyte di-myo-inositol-phosphate as well as expression of K+ -stimulated pyrophosphatase and capsule proteins.


Subject(s)
Geologic Sediments , Methane , Archaea/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics
14.
Syst Appl Microbiol ; 44(2): 126185, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33676264

ABSTRACT

The diverse and ubiquitous members of the SAR11 lineage (Alphaproteobacteria) represent up to 30-40% of the surface and mesopelagic oceanic microbial communities. However, the molecular and ecological mechanisms that differentiate closely related, yet distinct, SAR11 members that often co-occur under similar environmental conditions remain speculative. Recently, two mesopelagic and oxygen minimum zone (OMZ)-associated subclades of SAR11 (Ic and IIa.A) were described using single-cell amplified genomes (SAGs) linked to nitrate reduction in OMZs. In this current study, the collection of genomes belonging to these two subclades was expanded with thirteen new metagenome-assembled genomes (MAGs), thus providing a more detailed phylogenetic and functional characterization of these subclades. Gene content-based predictions of metabolic functions revealed similarities in central carbon metabolism between subclades Ic and IIa.A and surface SAR11 clades, with small variations in central pathways. These variations included more versatile sulfur assimilation pathways, as well as a previously predicted capacity for nitrate reduction that conferred unique versatility on mesopelagic-adapted clades compared to their surface counterparts. Finally, consistent with previously reported abundances of carbon monoxide (CO) in surface and mesopelagic waters, subclades Ia (surface) and Ic (mesopelagic) have the genetic potential to oxidize carbon monoxide (CO), presumably taking advantage of this abundant compound as an electron donor. Based on genomic analyses, environmental distribution and metabolic reconstruction, we propose two new SAR11 genera, Ca. Mesopelagibacter carboxydoxydans (subclade Ic) and Ca. Anoxipelagibacter denitrificans (subclade IIa.A), which represent members of the mesopelagic and OMZ-adapted SAR11 clades.


Subject(s)
Alphaproteobacteria , Nitrates , Phylogeny , Seawater/microbiology , Alphaproteobacteria/classification , Alphaproteobacteria/isolation & purification , Metagenome , Nitrates/metabolism
15.
PeerJ ; 9: e10525, 2021.
Article in English | MEDLINE | ID: mdl-33604161

ABSTRACT

BACKGROUND: Antibiotic resistance is a growing problem that can be ameliorated by the discovery of novel drug candidates. Bacterial associates are often the source of pharmaceutically active natural products isolated from marine invertebrates, and thus, important targets for drug discovery. While the microbiomes of many marine organisms have been extensively studied, microbial communities from chemically-rich nudibranchs, marine invertebrates that often possess chemical defences, are relatively unknown. METHODS: We applied both culture-dependent and independent approaches to better understand the biochemical potential of microbial communities associated with nudibranchs. Gram-positive microorganisms isolated from nudibranchs collected in the Red Sea were screened for antibacterial and antitumor activity. To assess their biochemical potential, the isolates were screened for the presence of natural product biosynthetic gene clusters, including polyketide synthase (PKS) and non-ribosomal peptide synthetase (NRPS) genes, using PCR. The microbiomes of the nudibranchs were investigated by high-throughput sequencing of 16S rRNA amplicons. RESULTS: In screens against five model microorganisms, 51% of extracts displayed antimicrobial activity against more than one organism, and 19% exhibited antitumor activity against Ehrlich's ascites carcinoma. Sixty-four percent of isolates contained PKS and NRPS genes, suggesting their genomes contain gene clusters for natural product biosynthesis. Thirty-five percent were positive for more than one class of biosynthetic gene. These strains were identified as belonging to the Firmicutes and Actinobacteria phyla via 16S rRNA gene sequencing. In addition, 16S rRNA community amplicon sequencing revealed all bacterial isolates were present in the uncultured host-associated microbiome, although they were a very small percentage of the total community. Taken together, these results indicate that bacteria associated with marine nudibranchs are potentially a rich source of bioactive compounds and natural product biosynthetic genes.

16.
PeerJ ; 8: e9493, 2020.
Article in English | MEDLINE | ID: mdl-33240577

ABSTRACT

Harmful Algal Blooms (HABs) exert considerable ecological and economic damage and are becoming increasingly frequent worldwide. However, the biological factors underlying HABs remain uncertain. Relationships between algae and bacteria may contribute to bloom formation, strength, and duration. We investigated the microbial communities and metabolomes associated with a HAB of the toxic dinoflagellate Karenia brevis off the west coast of Florida in June 2018. Microbial communities and intracellular metabolite pools differed based on both bacterial lifestyle and bloom level, suggesting a complex role for blooms in reshaping microbial processes. Network analysis identified K. brevis as an ecological hub in the planktonic ecosystem, with significant connections to diverse microbial taxa. These included four flavobacteria and one sequence variant unidentified past the domain level, suggesting uncharacterized diversity in phytoplankton-associated microbial communities. Additionally, intracellular metabolomic analyses associated high K. brevis levels with higher levels of aromatic compounds and lipids. These findings reveal water column microbial and chemical characteristics with potentially important implications for understanding HAB onset and duration.

17.
Microbiol Resour Announc ; 9(36)2020 Sep 03.
Article in English | MEDLINE | ID: mdl-32883786

ABSTRACT

Microbiology Resource Announcements (MRA) provides peer-reviewed announcements of scientific resources for the microbial research community. We describe the best practices for writing an announcement that ensures that these publications are truly useful resources. Adhering to these best practices can lead to successful publication without the need for extensive revisions.

18.
Environ Microbiol Rep ; 12(5): 583-593, 2020 10.
Article in English | MEDLINE | ID: mdl-32613749

ABSTRACT

Soluble ligand-bound Mn(III) can support anaerobic microbial respiration in diverse aquatic environments. Thus far, Mn(III) reduction has only been associated with certain Gammaproteobacteria. Here, we characterized microbial communities enriched from Mn-replete sediments of Lake Matano, Indonesia. Our results provide the first evidence for the biological reduction of soluble Mn(III) outside the Gammaproteobacteria. Metagenome assembly and binning revealed a novel betaproteobacterium, which we designate 'Candidatus Dechloromonas occultata.' This organism dominated the enrichment and expressed a porin-cytochrome c complex typically associated with iron-oxidizing Betaproteobacteria and a novel cytochrome c-rich protein cluster (Occ), including an undecaheme putatively involved in extracellular electron transfer. This occ gene cluster was also detected in diverse aquatic bacteria, including uncultivated Betaproteobacteria from the deep subsurface. These observations provide new insight into the taxonomic and functional diversity of microbially driven Mn(III) reduction in natural environments.


Subject(s)
Bacteria/classification , Bacteria/metabolism , Biodiversity , Lakes/microbiology , Manganese/metabolism , Bacteria/genetics , Bacteria/isolation & purification , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Indonesia , Iron/metabolism , Oxidation-Reduction , Phylogeny
19.
Proc Biol Sci ; 287(1927): 20200366, 2020 05 27.
Article in English | MEDLINE | ID: mdl-32453990

ABSTRACT

A number of tropical reefs have transitioned from coral to macroalgal dominance, but the role of macroalgal competition in coral decline is debated. There is a need to understand the relative roles of direct coral-algal effects versus indirect, microbially mediated effects shaping these interactions, as well as the relevant scales at which interactions operate under natural field, as opposed to laboratory, conditions. We conducted a manipulative field experiment investigating how direct contact versus close proximity (approx. 1.5 cm) with macroalgae (Galaxaura rugosa, Sargassum polycystum) impacted the growth, photosynthetic efficiency, and prokaryotic microbiome of the common Indo-Pacific coral Acropora millepora. Both coral growth and photosynthetic efficiency were suppressed when in direct contact with algae or their inert mimics--but not when in close proximity to corals without direct contact. Coral microbiomes were largely unaltered in composition, variability, or diversity regardless of treatment, although a few uncommon taxa differed in abundance among treatments. Negative impacts of macroalgae were contact dependent, accounted for by physical structure alone and had minimal effects on coral microbiomes. The spatial constraints of these interactions have important implications for understanding and predicting benthic community dynamics as reefs degrade.


Subject(s)
Anthozoa/physiology , Seaweed/physiology , Animals , Competitive Behavior , Ecosystem , Population Dynamics
20.
Nat Commun ; 11(1): 767, 2020 02 07.
Article in English | MEDLINE | ID: mdl-32034151

ABSTRACT

Nitrification, the oxidation of ammonia via nitrite to nitrate, is a key process in marine nitrogen (N) cycling. Although oceanic ammonia and nitrite oxidation are balanced, ammonia-oxidizing archaea (AOA) vastly outnumber the main nitrite oxidizers, the bacterial Nitrospinae. The ecophysiological reasons for this discrepancy in abundance are unclear. Here, we compare substrate utilization and growth of Nitrospinae to AOA in the Gulf of Mexico. Based on our results, more than half of the Nitrospinae cellular N-demand is met by the organic-N compounds urea and cyanate, while AOA mainly assimilate ammonium. Nitrospinae have, under in situ conditions, around four-times higher biomass yield and five-times higher growth rates than AOA, despite their ten-fold lower abundance. Our combined results indicate that differences in mortality between Nitrospinae and AOA, rather than thermodynamics, biomass yield and cell size, determine the abundances of these main marine nitrifiers. Furthermore, there is no need to invoke yet undiscovered, abundant nitrite oxidizers to explain nitrification rates in the ocean.

SELECTION OF CITATIONS
SEARCH DETAIL
...