Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 134(1): 355-66, 2012 Jan 11.
Article in English | MEDLINE | ID: mdl-22106984

ABSTRACT

A supported, single-site Lewis acid, ≡SiOB(C(6)F(5))(2), was prepared by water-catalyzed grafting of B(C(6)F(5))(3) onto the surface of amorphous silica, and its subsequent use as a cocatalyst for heterogeneous olefin polymerization was explored. Although B(C(6)F(5))(3) has been reported to be unreactive toward silica in the absence of a Brønsted base, we find that it can be grafted even at room temperature, albeit slowly. The mechanism was investigated by (1)H and (19)F NMR, in both the solution and solid states. In the presence of a trace amount of H(2)O, either added intentionally or formed in situ by borane-induced dehydration of silanol pairs, the adduct (C(6)F(5))(3)B·OH(2) hydrolyzes to afford C(6)F(5)H and (C(6)F(5))(2)BOH. The latter reacts with the surface hydroxyl groups of silica to yield ≡SiOB(C(6)F(5))(2) sites and regenerate H(2)O. When B(C(6)F(5))(3) is present in excess, the resulting grafted boranes appear to be completely dry, due to the eventual formation of [(C(6)F(5))(2)B](2)O. The immobilized, tri-coordinate Lewis acid sites were characterized by solid-state (11)B and (19)F NMR, IR, elemental analysis, and C(5)H(5)N-TPD. Their ability to activate two molecular C(2)H(4) polymerization catalysts, Cp(2)ZrMe(2) and an (α-iminocarboxamidato)nickel(II) complex, was explored.

2.
Biotechnol J ; 6(2): 213-23, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21298806

ABSTRACT

TiO2 films may be used to alter the wettability and hemocompatibility of cellulose materials. In this study, pure and stoichiometric TiO2 films were grown using atomic layer deposition on both silicon and cellulose substrates. The films were grown with uniform thicknesses and with a growth rate in agreement with literature results. The TiO2 films were shown to profoundly alter the water contact angle values of cellulose in a manner dependent upon processing characteristics. Higher amounts of protein adsorption indicated by blurry areas on images generated by scanning electron microscopy were noted on TiO2 -coated cellulose acetate than on uncoated cellulose acetate. These results suggest that atomic layer deposition is an appropriate method for improving the biological properties of hemostatic agents and other blood-contacting biomaterials.


Subject(s)
Cellulose/analogs & derivatives , Titanium/chemistry , Cell Survival/physiology , Cellulose/chemistry , Cellulose/pharmacology , Hemostasis/drug effects , Humans , Microscopy, Electron, Scanning , Platelet-Rich Plasma/drug effects , Spectroscopy, Fourier Transform Infrared , Wettability
3.
Langmuir ; 26(4): 2550-8, 2010 Feb 16.
Article in English | MEDLINE | ID: mdl-19799446

ABSTRACT

Atomic layer deposition (ALD) of aluminum oxide on nonwoven polypropylene and woven cotton fabric materials can be used to transform and control fiber surface wetting properties. Infrared analysis shows that ALD can produce a uniform coating throughout the nonwoven polypropylene fiber matrix, and the amount of coating can be controlled by the number of ALD cycles. Upon coating by ALD aluminum oxide, nonwetting hydrophobic polypropylene fibers transition to either a metastable hydrophobic or a fully wetting hydrophilic state, consistent with well-known Cassie-Baxter and Wenzel models of surface wetting of roughened surfaces. The observed nonwetting/wetting transition depends on ALD process variables such as the number of ALD coating cycles and deposition temperature. Cotton fabrics coated with ALD aluminum oxide at moderate temperatures were also observed to transition from a natural wetting state to a metastable hydrophobic state and back to wetting depending on the number of ALD cycles. The transitions on cotton appear to be less sensitive to deposition temperature. The results provide insight into the effect of ALD film growth mechanisms on hydrophobic and hydrophilic polymers and fibrous structures. The ability to adjust and control surface energy, surface reactivity, and wettability of polymer and natural fiber systems using atomic layer deposition may enable a wide range of new applications for functional fiber-based systems.


Subject(s)
Cotton Fiber , Polypropylenes/chemistry , Aluminum Oxide/chemistry , Materials Testing , Particle Size , Surface Properties , Wettability
4.
Langmuir ; 23(19): 9844-9, 2007 Sep 11.
Article in English | MEDLINE | ID: mdl-17691748

ABSTRACT

Atomic-scale material deposition is utilized to achieve uniform coverage and modification of the surface properties of natural fiber and woven fabric materials, where irregular nanoscale features are embedded in a macroscale interpenetrating fiber network. The complex surface topology of the woven fabric results in significantly different film-growth thickness per ALD cycle as compared to planar surfaces coated using the same process conditions, likely due to reactant adsorption within the fiber starting material, as well as impeded reactant transport out of the fabric system during the purge cycle. Cotton textiles modified with conformal nanoscale Al2O3 are found to show extreme hydrophobic effects, distinctly different from planar surfaces that receive the same coatings. The results highlight key concerns for achieving controlled conformal coatings on complex surfaces and open the possibility for new textile finishing approaches to create novel fabric-based materials with specialized function and performance.


Subject(s)
Aluminum Oxide/chemistry , Cotton Fiber , Nanotechnology , Microscopy, Electron, Transmission , Surface Properties
5.
Langmuir ; 23(11): 6106-12, 2007 May 22.
Article in English | MEDLINE | ID: mdl-17461600

ABSTRACT

Growth initiation and film nucleation in atomic layer deposition (ALD) is important for controlling interface composition and achieving atomic-scale films with well-defined composition. Ruthenium ALD is studied here using ruthenocene and oxygen as reactants, and growth initiation and nucleation are characterized on several different growth surfaces, including SiO2, HfO2, and hydrogen terminated silicon, using on-line Auger electron spectroscopy and ex-situ X-ray photoelectron spectroscopy. The time needed to reach the full growth rate (typically approximately 1 A per deposition cycle) is found to increase as the surface energy of the starting surface (determined from contact angle measurements) decreased. Growth starts more readily on HfO2 than on SiO2 or Si-H surfaces, and Auger analysis indicates distinct differences in surface reactions on the various surfaces during film nucleation. Specifically, surface oxygen is consumed during ruthenocene exposure, so the nucleation rate will depend on the availability of oxygen and the energetics of surface oxygen bonding on the starting substrate surface.

SELECTION OF CITATIONS
SEARCH DETAIL
...