Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurophysiol ; 115(4): 1970-7, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26864767

ABSTRACT

In humans, significant progress has been made to link spatial changes in electroencephalographic (EEG) spectral density, connectivity strength, and phase-amplitude modulation to neurological, physiological, and psychological correlates. In contrast, standard rodent EEG techniques employ only few electrodes, which results in poor spatial resolution. Recently, a technique was developed to overcome this limitation in mice. This technique was based on a polyimide-based microelectrode (PBM) array applied on the mouse skull, maintaining a significant number of electrodes with consistent contact, electrode impedance, and mechanical stability. The present study built on this technique by extending it to rats. Therefore, a similar PBM array, but adapted to rats, was designed and fabricated. In addition, this array was connected to a wireless EEG headstage, allowing recording in untethered, freely moving rats. The advantage of a high-density array relies on the assumption that the signal recorded from the different electrodes is generated from distinct sources, i.e., not volume-conducted. Therefore, the utility and validity of the array were evaluated by determining the level of synchrony between channels due to true synchrony or volume conduction during basal vigilance states and following a subanesthetic dose of ketamine. Although the PBM array allowed recording with high signal quality, under both drug and drug-free conditions, high synchronization existed due to volume conduction between the electrodes even in the higher spectral frequency range. Discrimination existed only between frontally and centrally/distally grouped electrode pairs. Therefore, caution should be used in interpreting spatial data obtained from high-density PBM arrays in rodents.


Subject(s)
Electroencephalography/methods , Neural Conduction , Animals , Cerebral Cortex/physiology , Electroencephalography/instrumentation , Male , Microelectrodes/adverse effects , Rats , Resins, Synthetic
2.
Genes Brain Behav ; 8(2): 248-55, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19077119

ABSTRACT

Febrile seizures (FS) are the most common seizure type in children and recurrent FS are a risk factor for developing temporal lobe epilepsy. Although the mechanisms underlying FS are largely unknown, recent family, twin and animal studies indicate that genetics are important in FS susceptibility. Here, a forward genetic strategy was used employing mouse chromosome substitution strains (CSS) to identify novel FS susceptibility quantitative trait loci (QTLs). FS were induced by exposure to warm air at postnatal day 14. Video electroencephalogram monitoring identified tonic-clonic convulsion onset, defined as febrile seizure latency (FSL), as a reliable phenotypic parameter to determine FS susceptibility. FSL was determined in both sexes of the host strain (C57BL/6J), the donor strain (A/J) and CSS. C57BL/6J mice were more susceptible to FS than A/J mice. Phenotypic screening of the CSS panel identified six strains(CSS1, -2, -6 -10, -13 and -X) carrying QTLs for FS susceptibility. CSS1, -10 and -13 were less susceptible (protective QTLs), whereas CSS2, -6 and -X were more susceptible (susceptibility QTLs) to FS than the C57BL/6J strain. Our data show that mouse FS susceptibility is determined by complex genetics, which is distinct from that for chemically induced seizures. This is the first dataset using CSS to screen for a seizure trait in mouse pups. It provides evidence for common FS susceptibility QTLs that serve as starting points to fine map FS susceptibility QTLs and to identify FS susceptibility genes. This will increase our understanding of human FS, working toward the identification of new therapeutic targets.


Subject(s)
Chromosomes, Mammalian/genetics , Quantitative Trait Loci/genetics , Seizures, Febrile/genetics , Animals , Behavior, Animal/physiology , Body Temperature/genetics , Body Temperature/physiology , Data Interpretation, Statistical , Electroencephalography , Female , Genetic Linkage/genetics , Male , Mice , Mice, Inbred A , Mice, Inbred C57BL , Phenotype , Seizures, Febrile/psychology
4.
Brain Res Brain Res Protoc ; 15(1): 14-20, 2005 May.
Article in English | MEDLINE | ID: mdl-15878146

ABSTRACT

Drug-induced changes in somatosensory-evoked potentials (SEPs) are considered to reflect an altered nociceptive state. Therefore, the SEP is proposed to be a parameter of analgesic efficacy. However, at present, SEPs have not been studied in relation to animal pain. The present study aims to develop a rat model in which this relationship can be studied based on Pavlovian fear conditioning. Therefore, rats, implanted with epidural electro-encephalogram recording electrodes, were randomly assigned to either a paired or random-control group and subjected to an aversive-to-appetitive transfer paradigm. During the aversive phase, the SEP-stimulation paradigm (5 mA square wave pulses, n = 72, of 2 ms duration each, with a stimulus frequency of 0.5 Hz; total duration 144 s) was used as the unconditioned stimulus (US), while a tone (40 s, 1500 Hz, 85 dB sound pressure level) was used as the conditioned stimulus (CS). During the appetitive phase, the CS was presented paired to the presentation of a sugar pellet. When compared to the random-control group, the paired group showed significantly more freezing behavior and significantly less reward-directed behavior in response to the CS in the appetitive phase. In addition, SEPs were not significantly affected by fear conditioning. Based on these results, we conclude that the SEP-stimulation paradigm can be successfully employed as a US in fear conditioning. In future studies, fear conditioning can be carried out under different levels of an analgesic regimen to allow the changes in SEP parameters to be compared to changes in fear-induced behavior making this model potentially useful to validate SEP parameters as indicators of analgesia.


Subject(s)
Analgesia , Evoked Potentials, Somatosensory/drug effects , Animals , Conditioning, Classical , Electric Stimulation , Fear/physiology , Fear/psychology , Food , Male , Models, Neurological , Rats , Rats, Wistar , Reward
SELECTION OF CITATIONS
SEARCH DETAIL
...