Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Orthod Dentofacial Orthop ; 161(4): 582-591, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35337648

ABSTRACT

INTRODUCTION: This study aimed to evaluate the differences in the precision, trueness, and accuracy of 3-dimensional (3D) printed clear orthodontic retainers fabricated using printer systems with different printing technologies. METHODS: Retainers (n = 15) were 3D printed using 4 different printers: stereolithography (SLA), digital light processing (DLP), continuous DLP, and polyjet photopolymer (PPP) printers. Printed retainers were transformed into a digital image through a cone-beam computed tomography scan and compared with the original image using 3D superimposition analysis software. At previously chosen landmarks (R6, L6, R3, L3, R1, and L1), intaglio surfaces of the retainers were compared to that of the reference model. The intercanine and the intermolar width measurements were also assessed. A discrepancy of up to 0.25 mm between the printed retainer and the reference retainer intaglio surfaces indicated accuracy and clinical acceptability. Precision and trueness were also determined. Root mean square and percent of points within the tolerance level were calculated for precision and trueness for each retainer. Statistical significance was set at P <0.05. RESULTS: Interrater correlation coefficient indicated good agreement. Statistically significant differences were found between printer types among the 6 landmarks and the arch width measurements. When evaluating tolerance level and root mean square, statistically significant differences in median precision and trueness among each printer type were found. CONCLUSION: Retainers fabricated by SLA, DLP, continuous DLP, and PPP technologies were shown to be clinically acceptable and accurate compared to the standard reference file. Based on both high precision and trueness, SLA and PPP printers yielded the most accurate retainers.


Subject(s)
Models, Dental , Printing, Three-Dimensional , Humans , Orthodontic Retainers , Software , Stereolithography
2.
Am J Orthod Dentofacial Orthop ; 161(1): 133-139, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35012743

ABSTRACT

INTRODUCTION: The study aimed to (1) compare the accuracy and precision of 3-dimensional (3D) printed retainers at various angulations and (2) evaluate the effect of angulation on printing time and the amount of resin consumed. METHODS: Using a stereolithography 3D printer, 60 clear retainers were printed at 5 angulations (n = 12, each): 15°, 30°, 45°, 60°, and 90°. Samples for each group were randomly printed in a batch of 6 retainers at all print angulations as print 1 and print 2 cycles. Digital images of the original and printed samples were superimposed. Discrepancies on 8 landmarks were measured by 2 independent examiners, and 0.25 mm was set as the clinically acceptable threshold to determine the accuracy of the retainers. RESULTS: Deviations ranged from 0.074 mm to 0.225 mm from the reference retainer at the cusp tips and incisal edges at all angulations, falling within the threshold of clinical acceptance. However, smooth surface measurements with deviations up to 0.480 mm were deemed clinically not acceptable. Three-dimensional printing at 15° was estimated to be the most time-efficient, whereas 3D printing at 45° was shown to be the most cost-effective setting. CONCLUSIONS: Three-dimensional printed retainers, using a stereolithography printer, were found to be accurate within 0.25 mm at all print angulations at the cusp tips and incisal edges compared with the digital reference file. Smooth facial surfaces did not meet clinical acceptability. Print angulations were shown to affect the cost and amount of resin used.


Subject(s)
Orthodontic Retainers , Stereolithography , Humans , Printing, Three-Dimensional
SELECTION OF CITATIONS
SEARCH DETAIL
...