Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
Add more filters










Publication year range
1.
Theor Appl Genet ; 137(2): 34, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38286831

ABSTRACT

KEY MESSAGE: Shared changes in transcriptomes caused by Fusarium crown rot infection and drought stress were investigated based on a single pair of near-isogenic lines developed for a major locus conferring tolerance to both stresses. Fusarium crown rot (FCR) is a devastating disease in many areas of cereal production worldwide. It is well-known that drought stress enhances FCR severity but possible molecular relationship between these two stresses remains unclear. To investigate their relationships, we generated several pairs of near isogenic lines (NILs) targeting a locus conferring FCR resistance on chromosome 2D in bread wheat. One pair of these NILs showing significant differences between the two isolines for both FCR resistance and drought tolerance was used to investigate transcriptomic changes in responsive to these two stresses. Our results showed that the two isolines likely deployed different strategies in dealing with the stresses, and significant differences in expressed gene networks exist between the two time points of drought stresses evaluated in this study. Nevertheless, results from analysing Gene Ontology terms and transcription factors revealed that similar regulatory frameworks were activated in coping with these two stresses. Based on the position of the targeted locus, changes in expression following FCR infection and drought stresses, and the presence of non-synonymous variants between the two isolines, several candidate genes conferring resistance or tolerance to these two types of stresses were identified. The NILs generated, the large number of DEGs with single-nucleotide polymorphisms detected between the two isolines, and the candidate genes identified would be invaluable in fine mapping and cloning the gene(s) underlying the targeted locus.


Subject(s)
Fusarium , Transcriptome , Fusarium/physiology , Triticum/genetics , Droughts , Bread , Plant Diseases/genetics , Gene Expression Profiling
2.
PLoS One ; 19(1): e0296491, 2024.
Article in English | MEDLINE | ID: mdl-38165968

ABSTRACT

Formalin fixation of natural history specimens and histopathological material has historically been viewed as an impediment to successful genomic analysis. However, the development of extraction methods specifically tailored to contend with heavily crosslinked archival tissues, re-contextualises millions of previously overlooked specimens as viable molecular assets. Here, we present an easy-to-follow protocol for screening archival wet specimens for molecular viability and subsequent genomic DNA extraction suitable for sequencing. The protocol begins with non-destructive assessment of specimen degradation and preservation media conditions to allow both museum curators and researchers to select specimens most likely to yield an acceptable proportion (20-60%) of mappable endogenous DNA during short-read DNA sequencing. The extraction protocol uses hot alkaline lysis in buffer (0.1M NaOH, 1% SDS, pH 13) to simultaneously lyse and de-crosslink the tissue. To maximise DNA recovery, phenol:chloroform extraction is coupled with a small-fragment optimised SPRI bead clean up. Applied to well-preserved archival tissues, the protocol can yield 1-2 µg DNA per 50 mg of tissue with mean fragment sizes typically ranging from 50-150 bp, which is suitable to recover genomic DNA sufficient to reconstruct complete mitochondrial genomes and achieve up to 25X nuclear genome coverage. We provide guidance for read mapping to a reference genome and discuss the limitations of relying on small fragments for SNP genotyping and de novo genome assembly. This protocol opens the door to broader-scale genetic and phylogenetic analysis of historical specimens, contributing to a deeper understanding of evolutionary trends and adaptation in response to changing environments.


Subject(s)
Formaldehyde , Genome, Mitochondrial , Formaldehyde/chemistry , Phylogeny , DNA/genetics , DNA/chemistry , Sequence Analysis, DNA/methods
3.
Int J Mol Sci ; 24(4)2023 Feb 04.
Article in English | MEDLINE | ID: mdl-36834507

ABSTRACT

Wheat (Triticum aestivum L.) growing areas in many regions of the world are subject to heat waves which are predicted to increase in frequency because of climate change. The engineering of crop plants can be a useful strategy to mitigate heat stress-caused yield losses. Previously, we have shown that heat shock factor subclass C (TaHsfC2a-B)-overexpression significantly increased the survival of heat-stressed wheat seedlings. Although previous studies have shown that the overexpression of Hsf genes enhanced the survival of plants under heat stress, the molecular mechanisms are largely unknown. To understand the underlying molecular mechanisms involved in this response, a comparative analysis of the root transcriptomes of untransformed control and TaHsfC2a-overexpressing wheat lines by RNA-sequencing have been performed. The results of RNA-sequencing indicated that the roots of TaHsfC2a-overexpressing wheat seedlings showed lower transcripts of hydrogen peroxide-producing peroxidases, which corresponds to the reduced accumulation of hydrogen peroxide along the roots. In addition, suites of genes from iron transport and nicotianamine-related gene ontology categories showed lower transcript abundance in the roots of TaHsfC2a-overexpressing wheat roots than in the untransformed control line following heat stress, which are in accordance with the reduction in iron accumulation in the roots of transgenic plants under heat stress. Overall, these results suggested the existence of ferroptosis-like cell death under heat stress in wheat roots, and that TaHsfC2a is a key player in this mechanism. To date, this is the first evidence to show that a Hsf gene plays a key role in ferroptosis under heat stress in plants. In future, the role of Hsf genes could be further studied on ferroptosis in plants to identify root-based marker genes to screen for heat-tolerant genotypes.


Subject(s)
Ferroptosis , Triticum , Triticum/genetics , Hydrogen Peroxide/metabolism , Plant Proteins/genetics , Heat-Shock Response/genetics , Gene Expression Profiling , Transcriptome , RNA/metabolism , Iron/metabolism , Gene Expression Regulation, Plant
4.
Theor Appl Genet ; 135(4): 1279-1292, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35275251

ABSTRACT

KEY MESSAGE: This manuscript describes the identification, isolation and sequencing of a single chromosome containing high value resistance genes from a complex polyploid where sequencing the whole genome is too costly. The large complex genomes of many crops constrain the use of new technologies for genome-assisted selection and genetic improvement. One method to simplify a genome is to break it into individual chromosomes by flow cytometry; however, in many crop species most chromosomes cannot be isolated individually. Flow sorting of a single copy of a chromosome has been developed in wheat, and here we demonstrate its use to identify markers of interest in an Erianthus/Sacchurum hybrid. Erianthus/Saccharum hybrids are of interest because Erianthus is known to be highly resistant to soil borne diseases which cause extensive sugarcane yield losses in Australia. Sugarcane (Saccharum) cultivars are autopolyploids with a highly complex genome and over 100 chromosomes. Flow cytometry for sugarcane, as in most crops, does not resolve individual chromosomes to a karyotype peak for sorting. To isolate a single chromosome, we used genomic in situ hybridization (GISH) to identify the flow karyotype region containing the Erianthus chromosomes, flow sorted single chromosomes from this region, PCR screened for the Erianthus chromosomes and sequenced them. One Erianthus chromosome amplified and sequenced well, and from this data we could identify 57 resistant type genes and SNPs in nearly half of these genes. We developed KASP SNP assays and demonstrated that the identified SNP markers segregated as expected in a small introgression population. The pipeline we developed here to flow sort and sequence single chromosomes could be used in any crop with a large complex genome to rapidly discover and develop markers to important loci.


Subject(s)
Polymorphism, Single Nucleotide , Saccharum , Crops, Agricultural/genetics , Genome, Plant , Karyotype , Polyploidy , Saccharum/genetics
5.
Mol Ecol Resour ; 22(6): 2130-2147, 2022 Aug.
Article in English | MEDLINE | ID: mdl-34549888

ABSTRACT

Museum specimens represent an unparalleled record of historical genomic data. However, the widespread practice of formalin preservation has thus far impeded genomic analysis of a large proportion of specimens. Limited DNA sequencing from formalin-preserved specimens has yielded low genomic coverage with unpredictable success. We set out to refine sample processing methods and to identify specimen characteristics predictive of sequencing success. With a set of taxonomically diverse specimens collected between 1962 and 2006 and ranging in preservation quality, we compared the efficacy of several end-to-end whole genome sequencing workflows alongside a k-mer-based trimming-free read alignment approach to maximize mapping of endogenous sequence. We recovered complete mitochondrial genomes and up to 3× nuclear genome coverage from formalin-preserved tissues. Hot alkaline lysis coupled with phenol-chloroform extraction out-performed proteinase K digestion in recovering DNA, while library preparation method had little impact on sequencing success. The strongest predictor of DNA yield was overall specimen condition, which additively interacts with preservation conditions to accelerate DNA degradation. Here, we demonstrate a significant advance in capability beyond limited recovery of a small number of loci via PCR or target-capture sequencing. To facilitate strategic selection of suitable specimens for genomic sequencing, we present a decision-making framework that utilizes independent and nondestructive assessment criteria. Sequencing of formalin-preserved specimens will contribute to a greater understanding of temporal trends in genetic adaptation, including those associated with a changing climate. Our work enhances the value of museum collections worldwide by unlocking genomes of specimens that have been disregarded as a valid molecular resource.


Subject(s)
Formaldehyde , Genome, Mitochondrial , DNA/genetics , Preservation, Biological , Sequence Analysis, DNA/methods
6.
Genome ; 64(9): 847-856, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33661713

ABSTRACT

Subgenome asymmetry (SA) has routinely been attributed to different responses between the subgenomes of a polyploid to various stimuli during evolution. Here, we compared subgenome differences in gene ratio and relative diversity between artificial and natural genotypes of several allopolyploid species. Surprisingly, consistent differences were not detected between these two types of polyploid genotypes, although they differ in times exposed to evolutionary selection. The estimated ratio of shared genes between a subgenome and its diploid donor was invariably higher for the artificial allopolyploid genotypes than those for the natural genotypes, which is expected as it is now well-known that many genes in a species are not shared among all individuals. As the exact diploid parent for a given subgenome is unknown, the estimated ratios of shared genes for the natural genotypes would also include difference among individual genotypes of the diploid donor species. Further, we detected the presence of SA in genotypes before the completion of the polyploidization events as well as in those which were not formed via polyploidization. These results indicate that SA may, to a large degree, reflect differences between its diploid donors or that changes occurred during polyploid evolution are defined by their donor genomes.


Subject(s)
Diploidy , Genome, Plant , Polyploidy , Arabidopsis , Brassica , Gossypium , Triticum
7.
Theor Appl Genet ; 133(9): 2535-2544, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32448920

ABSTRACT

KEY MESSAGE: We identified 1.844 million barley pan-genome sequence anchors from 12,306 genotypes using genetic mapping and machine learning. There is increasing evidence that genes from a given crop genotype are far to cover all genes in that species; thus, building more comprehensive pan-genomes is of great importance in genetic research and breeding. Obtaining a thousand-genotype scale pan-genome using deep-sequencing data is currently impractical for species like barley which has a huge and highly repetitive genome. To this end, we attempted to identify barley pan-genome sequence anchors from a large quantity of genotype-by-sequencing (GBS) datasets by combining genetic mapping and machine learning algorithms. Based on the GBS sequences from 11,166 domesticated and 1140 wild barley genotypes, we identified 1.844 million pan-genome sequence anchors. Of them, 532,253 were identified as presence/absence variation (PAV) tags. Through aligning these PAV tags to the genome of hulless barley genotype Zangqing320, our analysis resulted in a validation of 83.6% of them from the domesticated genotypes and 88.6% from the wild barley genotypes. Association analyses against flowering time, plant height and kernel size showed that the relative importance of the PAV and non-PAV tags varied for different traits. The pan-genome sequence anchors based on GBS tags can facilitate the construction of a comprehensive pan-genome and greatly assist various genetic studies including identification of structural variation, genetic mapping and breeding in barley.


Subject(s)
Chromosome Mapping , Genome, Plant , Hordeum/genetics , Machine Learning , Algorithms , Genotype , Linkage Disequilibrium
8.
Plant Biotechnol J ; 18(2): 443-456, 2020 02.
Article in English | MEDLINE | ID: mdl-31314154

ABSTRACT

Wild barley (Hordeum spontaneum) is the progenitor of cultivated barley (Hordeum vulgare) and provides a rich source of genetic variations for barley improvement. Currently, the genome sequences of wild barley and its differences with cultivated barley remain unclear. In this study, we report a high-quality draft assembly of wild barley accession (AWCS276; henceforth named as WB1), which consists of 4.28 Gb genome and 36 395 high-confidence protein-coding genes. BUSCO analysis revealed that the assembly included full lengths of 95.3% of the 956 single-copy plant genes, illustrating that the gene-containing regions have been well assembled. By comparing with the genome of the cultivated genotype Morex, it is inferred that the WB1 genome contains more genes involved in resistance and tolerance to biotic and abiotic stresses. The presence of the numerous WB1-specific genes indicates that, in addition to enhance allele diversity for genes already existing in the cultigen, exploiting the wild barley taxon in breeding should also allow the incorporation of novel genes. Furthermore, high levels of genetic variation in the pericentromeric regions were detected in chromosomes 3H and 5H between the wild and cultivated genotypes, which may be the results of domestication. This H. spontaneum draft genome assembly will help to accelerate wild barley research and be an invaluable resource for barley improvement and comparative genomics research.


Subject(s)
Genome, Plant , Hordeum , Domestication , Genome, Plant/genetics , Genotype , Hordeum/genetics , Stress, Physiological/genetics
9.
BMC Genomics ; 20(1): 650, 2019 Aug 14.
Article in English | MEDLINE | ID: mdl-31412765

ABSTRACT

BACKGROUND: Fusarium crown rot (FCR) is a chronic and severe disease in cereal production in semi-arid regions worldwide. A putative quantitative trait locus conferring FCR resistance, Qcrs.cpi-1H, had previously been mapped on the long arm of chromosome 1H in barley. RESULTS: In this study, five pairs of near-isogenic lines (NILs) targeting the 1HL locus were developed. Analysing the NILs found that the resistant allele at Qcrs.cpi-1H significantly reduced FCR severity. Transcriptomic analysis was then conducted against three of the NIL pairs, which placed the Qcrs.cpi-1H locus in an interval spanning about 11 Mbp. A total of 56 expressed genes bearing single nucleotide polymorphisms (SNPs) were detected in this interval. Five of them contain non-synonymous SNPs. These results would facilitate detailed mapping as well as cloning gene(s) underlying the resistance locus. CONCLUSION: NILs developed in this study and the transcriptomic sequences obtained from them did not only allow the validation of the resistance locus Qcrs.cpi-1H and the identification of candidate genes underlying its resistance, they also allowed the delineation of the resistance locus and the development of SNPs markers which formed a solid base for detailed mapping as well as cloning gene(s) underlying the locus.


Subject(s)
Disease Resistance/genetics , Fusarium/physiology , Gene Expression Profiling , Genetic Loci/genetics , Hordeum/genetics , Hordeum/microbiology , Plant Diseases/microbiology , Hordeum/immunology , Plant Diseases/immunology , Polymorphism, Single Nucleotide , Quantitative Trait Loci/genetics
10.
BMC Genomics ; 20(1): 12, 2019 Jan 07.
Article in English | MEDLINE | ID: mdl-30616511

ABSTRACT

BACKGROUND: It has become clear in recent years that many genes in a given species may not be found in a single genotype thus using sequences from a single genotype as reference may not be adequate for various applications. RESULTS: In this study we constructed a pan-transcriptome for barley by de novo assembling 288 sets of RNA-seq data from 32 cultivated barley genotypes and 31 wild barley genotypes. The pan-transcriptome consists of 756,632 transcripts with an average N50 length of 1240 bp. Of these, 289,697 (38.2%) were not found in the genome of the international reference genotype Morex. The novel transcripts are enriched with genes associated with responses to different stresses and stimuli. At the pan-transcriptome level, genotypes of wild barley have a higher proportion of disease resistance genes than cultivated ones. CONCLUSIONS: We demonstrate that the use of the pan-transcriptome dramatically improved the efficiency in detecting variation in barley. Analysing the pan-transcriptome also found that, compared with those in other categories, disease resistance genes have gone through stronger selective pressures during domestication.


Subject(s)
Domestication , Hordeum/genetics , Selection, Genetic , Transcriptome/genetics , Disease Resistance/genetics , Gene Expression Profiling , Genome, Plant/genetics
11.
Theor Appl Genet ; 131(5): 1125-1132, 2018 May.
Article in English | MEDLINE | ID: mdl-29427242

ABSTRACT

KEY MESSAGE: Sequence comparison between spelt and common wheat reveals that the former has huge potential in enriching the genetic variation of the latter. Genetic variation is the foundation of crop improvement. By comparing genome sequences of a Triticum spelta accession and one of its derived hexaploid lines with the sequences of the international reference genotype Chinese Spring, we detected variants more than tenfold higher than those present among common wheat (T. aestivum L) genotypes. Furthermore, different from the typical 'V-shaped' pattern of variant distribution often observed along wheat chromosomes, the sequence variation detected in this study was more evenly distributed along the 3B chromosome. This was also the case between T. spelta and the wild emmer genome. Genetic analysis showed that T. spelta and common wheat formed discrete groups. These results showed that, although it is believed that the spelt and common wheat are evolutionarily closely related and belong to the same species, a significant sequence divergence exists between them. Thus, the values of T. spelta in enriching the genetic variation of common wheat can be huge.


Subject(s)
Biological Evolution , Genetic Variation , Triticum/genetics , Genome, Plant , Genotype , Microsatellite Repeats , Polymorphism, Single Nucleotide , Triticum/classification
12.
Theor Appl Genet ; 131(3): 613-624, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29170790

ABSTRACT

KEY MESSAGE: This study demonstrates how identification of genes underpinning disease-resistance QTL based on differential expression and SNPs can be improved by performing transcriptomic analysis on multiple near isogenic lines. Transcriptomic analysis has been widely used to understand the genetic basis of a trait of interest by comparing genotypes with contrasting phenotypes. However, these approaches identify such large sets of differentially expressed genes that it proves difficult to isolate which genes underpin the phenotype of interest. This study tests whether using multiple near isogenic lines (NILs) can improve the resolution of RNA-seq-based approaches to identify genes underpinning disease-resistance QTL. A set of NILs for a major effect Fusarium crown rot-resistance QTL in barley on the 4HL chromosome arm were analysed under Fusarium crown rot using RNA-seq. Differential gene expression and single nucleotide polymorphism detection analyses reduced the number of putative candidates from thousands within individual NIL pairs to only one hundred and two genes, which were differentially expressed or contained SNPs in common across NIL pairs and occurred on 4HL. Our findings support the value of performing RNA-seq analysis using multiple NILs to remove genetic background effects. The enrichment analyses indicated conserved differences in the response to infection between resistant and sensitive isolines suggesting that sensitive isolines are impaired in systemic defence response to Fusarium pseudograminearum.


Subject(s)
Disease Resistance/genetics , Hordeum/genetics , Plant Diseases/genetics , Quantitative Trait Loci , Sequence Analysis, RNA , Fusarium , Gene Expression Profiling , Gene Expression Regulation, Plant , Genotype , Hordeum/microbiology , Phenotype , Plant Diseases/microbiology , Polymorphism, Single Nucleotide
13.
Mol Plant Pathol ; 19(1): 217-226, 2018 01.
Article in English | MEDLINE | ID: mdl-27888554

ABSTRACT

Fusarium pseudograminearum is an important pathogen of wheat and barley, particularly in semi-arid environments. Previous genome assemblies for this organism were based entirely on short read data and are highly fragmented. In this work, a genetic map of F. pseudograminearum has been constructed for the first time based on a mapping population of 178 individuals. The genetic map, together with long read scaffolding of a short read-based genome assembly, was used to give a near-complete assembly of the four F. pseudograminearum chromosomes. Large regions of synteny between F. pseudograminearum and F. graminearum, the related pathogen that is the primary causal agent of cereal head blight disease, were previously proposed in the core conserved genome, but the construction of a genetic map to order and orient contigs is critical to the validation of synteny and the placing of species-specific regions. Indeed, our comparative analyses of the genomes of these two related pathogens suggest that rearrangements in the F. pseudograminearum genome have occurred in the chromosome ends. One of these rearrangements includes the transposition of an entire gene cluster involved in the detoxification of the benzoxazolinone (BOA) class of plant phytoalexins. This work provides an important genomic and genetic resource for F. pseudograminearum, which is less well characterized than F. graminearum. In addition, this study provides new insights into a better understanding of the sexual reproduction process in F. pseudograminearum, which informs us of the potential of this pathogen to evolve.


Subject(s)
Chromosome Mapping , Edible Grain/microbiology , Fusarium/genetics , Genome, Fungal , Plant Diseases/microbiology , Base Sequence , Crosses, Genetic , Fusarium/isolation & purification , Gene Order , Genes, Fungal , Genes, Mating Type, Fungal , Genetic Linkage , Genetic Loci , Polymorphism, Single Nucleotide/genetics , Recombination, Genetic/genetics , Species Specificity , Virulence/genetics
14.
Sci Rep ; 7(1): 17212, 2017 12 08.
Article in English | MEDLINE | ID: mdl-29222453

ABSTRACT

Fusarium crown rot (FCR) of wheat and barley, predominantly caused by the fungal pathogen Fusarium pseudograminearum, is a disease of economic significance. The quantitative nature of FCR resistance within cultivated wheat germplasm has significantly limited breeding efforts to enhanced FCR resistance in wheat. In this study, we characterized the molecular responses of Brachypodium distachyon (Brachypodium hereafter) to F. pseudograminearum infection using RNA-seq to determine whether Brachypodium can be exploited as a model system towards better understanding of F. pseudograminearum-wheat interaction. The transcriptional response to infection in Brachypodium was strikingly similar to that previously reported in wheat, both in shared expression patterns of wheat homologs of Brachypodium genes and functional overlap revealed through comparative gene ontology analysis in both species. Metabolites produced by various biosynthetic pathways induced in both wheat and Brachypodium were quantified, revealing a high degree of overlap between these two species in metabolic response to infection but also showed Brachypodium does not produce certain defence-related metabolites found in wheat. Functional analyses of candidate genes identified in this study will improve our understanding of resistance mechanisms and may lead to the development of new strategies to protect cereal crops from pathogen infection.


Subject(s)
Brachypodium/genetics , Brachypodium/microbiology , Fusarium/physiology , Gene Expression Profiling , Triticum/genetics , Triticum/microbiology , Brachypodium/immunology , Brachypodium/metabolism , Indoles/metabolism , Iridoid Glucosides/metabolism , Plant Diseases/immunology , Plant Diseases/microbiology , Sesquiterpenes/metabolism , Species Specificity , Triticum/immunology , Triticum/metabolism , Tryptophan/metabolism , Phytoalexins
15.
PLoS One ; 12(4): e0176022, 2017.
Article in English | MEDLINE | ID: mdl-28441405

ABSTRACT

The conserved protein complex known as Mediator conveys transcriptional signals by acting as an intermediary between transcription factors and RNA polymerase II. As a result, Mediator subunits play multiple roles in regulating developmental as well as abiotic and biotic stress pathways. In this report we identify the head domain subunits MEDIATOR18 and MEDIATOR20 as important susceptibility factors for Fusarium oxysporum infection in Arabidopsis thaliana. Mutants of MED18 and MED20 display down-regulation of genes associated with jasmonate signaling and biosynthesis while up-regulation of salicylic acid associated pathogenesis related genes and reactive oxygen producing and scavenging genes. We propose that MED18 and MED20 form a sub-domain within Mediator that controls the balance of salicylic acid and jasmonate associated defense pathways.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Arabidopsis/microbiology , Fusarium/physiology , Mediator Complex/genetics , Plant Diseases/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Cyclopentanes/metabolism , Disease Susceptibility , Down-Regulation , Gene Expression Regulation, Plant , Mediator Complex/metabolism , Oxylipins/metabolism , Plant Diseases/microbiology , Salicylic Acid/metabolism , Up-Regulation
16.
Genome ; 60(3): 208-215, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28098486

ABSTRACT

Gene loss during the formation of hexaploid bread wheat has been repeatedly reported. However, our knowledge on genome-wide analysis of the genes present on a single subgenome (SSG) in bread wheat is still limited. In this study, by analysing the 'Chinese Spring' chromosome arm shotgun sequences together with high-confidence gene models, we detected 433 genes on a SSG. Greater gene loss was observed in A and D subgenomes compared with B subgenome. More than 79% of the orthologs for these SSG genes were detected in diploid and tetraploid relatives of hexaploid wheat. Unexpectedly, no bias in expression breadth or in the distribution patterns of GO (gene ontology) terms for these genes was detected among the high-confidence genes. Further, network and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analyses indicated that most of these genes were not functionally related to each other. Interestingly, 30.7% of these SSG genes were most highly expressed in root, showing biased distribution given the distribution of the whole high-confidence genes. Collectively, these results facilitate our understanding of the loss of the genes that were retained in a SSG during the formation of hexaploid wheat.


Subject(s)
Chromosomes, Plant/genetics , Genome, Plant , Plant Roots/genetics , Triticum/genetics , Algorithms , China , Diploidy , Evolution, Molecular , Genes, Plant , Genotype , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Roots/metabolism , Plant Stems/metabolism , Polyploidy , Sequence Analysis, RNA , Tetraploidy , Transcriptome
17.
Funct Plant Biol ; 44(8): 795-808, 2017 Jul.
Article in English | MEDLINE | ID: mdl-32480608

ABSTRACT

The role of ShSUT1 in sucrose mobilisation and storage in sugarcane was investigated by employing RNAi technology to reduce the expression of this gene. Transcript profiling in non-transformed plants showed an alignment between expression and sucrose concentration, with strongest expression in source leaves and increasing expression through the daylight period of a diurnal cycle. Five transgenic plant lines were produced with reduced ShSUT1 expression ranging from 52 to 92% lower than control plants. Differential suppression of ShSUT1 sequence variants in the highly polyploid sugarcane genome were also investigated. Amplicon sequencing of the ShSUT1 variants within the transgenic lines and controls showed no preferential suppression with only minor differences in the proportional expression of the variants. A range of altered sugar, fibre and moisture contents were measured in mature leaf and internode samples, but no phenotype was consistently exhibited by all five transgenic lines. Phenotypes observed indicate that ShSUT1 does not play a direct role in phloem loading. ShSUT1 is likely involved with retrieving sucrose from intercellular spaces for transport and storage.

18.
Ann Bot ; 119(5): 853-867, 2017 03 01.
Article in English | MEDLINE | ID: mdl-27941094

ABSTRACT

Background and Aims: Fusarium crown rot caused by the fungal pathogen Fusarium pseudograminearum is a disease of wheat and barley, bearing significant economic cost. Efforts to develop effective resistance to this disease have been hampered by the quantitative nature of resistance and a lack of understanding of the factors associated with resistance and susceptibility. Here, we aimed to dissect transcriptional responses triggered in wheat by F. pseudograminearum infection. Methods: We used an RNA-seq approach to analyse host responses during a compatible interaction and identified >2700 wheat genes differentially regulated after inoculation with F. pseudograminearum . The production of a few key metabolites and plant hormones in the host during the interaction was also analysed. Key Results: Analysis of gene ontology enrichment showed that a disproportionate number of genes involved in primary and secondary metabolism, signalling and transport were differentially expressed in infected seedlings. A number of genes encoding pathogen-responsive uridine-diphosphate glycosyltransferases (UGTs) potentially involved in detoxification of the Fusarium mycotoxin deoxynivalenol (DON) were differentially expressed. Using a F. pseudograminearum DON-non-producing mutant, DON was shown to play an important role in virulence during Fusarium crown rot. An over-representation of genes involved in the phenylalanine, tryptophan and tyrosine biosynthesis pathways was observed. This was confirmed through metabolite analyses that demonstrated tryptamine and serotonin levels are induced after F. pseudograminearum inoculation. Conclusions: Overall, the observed host response in bread wheat to F. pseudograminearum during early infection exhibited enrichment of processes related to pathogen perception, defence signalling, transport and metabolism and deployment of chemical and enzymatic defences. Additional functional analyses of candidate genes should reveal their roles in disease resistance or susceptibility. Better understanding of host responses contributing to resistance and/or susceptibility will aid the development of future disease improvement strategies against this important plant pathogen.


Subject(s)
Fusarium/physiology , Gene Expression Regulation, Plant , Plant Diseases/microbiology , Trichothecenes/metabolism , Triticum/genetics , Triticum/microbiology , High-Throughput Nucleotide Sequencing , Host-Pathogen Interactions , Sequence Analysis, DNA
19.
Plant Biotechnol J ; 15(4): 533-543, 2017 04.
Article in English | MEDLINE | ID: mdl-27735125

ABSTRACT

Bread wheat (Triticum aestivum L.) is an allopolyploid species containing three ancestral genomes. Therefore, three homoeologous copies exist for the majority of genes in the wheat genome. Whether different homoeologs are differentially expressed (homoeolog expression bias) in response to biotic and abiotic stresses is poorly understood. In this study, we applied a RNA-seq approach to analyse homoeolog-specific global gene expression patterns in wheat during infection by the fungal pathogen Fusarium pseudograminearum, which causes crown rot disease in cereals. To ensure specific detection of homoeologs, we first optimized read alignment methods and validated the results experimentally on genes with known patterns of subgenome-specific expression. Our global analysis identified widespread patterns of differential expression among homoeologs, indicating homoeolog expression bias underpins a large proportion of the wheat transcriptome. In particular, genes differentially expressed in response to Fusarium infection were found to be disproportionately contributed from B and D subgenomes. In addition, we found differences in the degree of responsiveness to pathogen infection among homoeologous genes with B and D homoeologs exhibiting stronger responses to pathogen infection than A genome copies. We call this latter phenomenon as 'homoeolog induction bias'. Understanding how homoeolog expression and induction biases operate may assist the improvement of biotic stress tolerance in wheat and other polyploid crop species.


Subject(s)
Polyploidy , Transcriptome/genetics , Triticum/genetics , Chromosomes, Plant/genetics , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology
20.
Sci Rep ; 6: 36398, 2016 11 08.
Article in English | MEDLINE | ID: mdl-27821854

ABSTRACT

The hexaploid wheat genotype Chinese Spring (CS) has been used worldwide as the reference base for wheat genetics and genomics, and significant resources have been used by the international community to generate a reference wheat genome based on this genotype. By sequencing flow-sorted 3B chromosome from a hexaploid wheat genotype CRNIL1A and comparing the obtained sequences with those available for CS, we detected that a large number of sequences in the former were missing in the latter. If the distribution of such sequences in the hexaploid wheat genome is random, CRNILA sequences missing in CS could be as much as 159.3 Mb even if only fragments of 50 bp or longer were considered. Analysing RNA sequences available in the public domains also revealed that dispensable genes are common in hexaploid wheat. Together with those extensive intra- and interchromosomal rearrangements in CS, the existence of such dispensable genes is another factor highlighting potential issues with the use of reference genomes in various studies. Strong deviation in distributions of these dispensable sequences among genotypes with different geographical origins provided the first evidence indicating that they could be associated with adaptation in wheat.


Subject(s)
Chromosomes, Plant/genetics , Sequence Analysis, DNA/methods , Triticum/genetics , Chromosome Mapping , Genome, Plant , Polyploidy
SELECTION OF CITATIONS
SEARCH DETAIL
...