Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Pharmacol Transl Sci ; 4(4): 1306-1321, 2021 Aug 13.
Article in English | MEDLINE | ID: mdl-34423268

ABSTRACT

Nonselective antagonists of muscarinic acetylcholine receptors (mAChRs) that broadly inhibit all five mAChR subtypes provide an efficacious treatment for some movement disorders, including Parkinson's disease and dystonia. Despite their efficacy in these and other central nervous system disorders, antimuscarinic therapy has limited utility due to severe adverse effects that often limit their tolerability by patients. Recent advances in understanding the roles that each mAChR subtype plays in disease pathology suggest that highly selective ligands for individual subtypes may underlie the antiparkinsonian and antidystonic efficacy observed with the use of nonselective antimuscarinic therapeutics. Our recent work has indicated that the M4 muscarinic acetylcholine receptor has several important roles in opposing aberrant neurotransmitter release, intracellular signaling pathways, and brain circuits associated with movement disorders. This raises the possibility that selective antagonists of M4 may recapitulate the efficacy of nonselective antimuscarinic therapeutics and may decrease or eliminate the adverse effects associated with these drugs. However, this has not been directly tested due to lack of selective antagonists of M4. Here, we utilize genetic mAChR knockout animals in combination with nonselective mAChR antagonists to confirm that the M4 receptor activation is required for the locomotor-stimulating and antiparkinsonian efficacy in rodent models. We also report the synthesis, discovery, and characterization of the first-in-class selective M4 antagonists VU6013720, VU6021302, and VU6021625 and confirm that these optimized compounds have antiparkinsonian and antidystonic efficacy in pharmacological and genetic models of movement disorders.

2.
Bioorg Med Chem Lett ; 37: 127838, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33556572

ABSTRACT

A high throughput screen (HTS) identified a novel, but weak (EC50 = 6.2 µM, 97% Glu Max) mGlu4 PAM chemotype based on a 1,4-thiazepane core, VU0544412. Reaction development and chemical optimization delivered a potent mGlu4 PAM VU6022296 (EC50 = 32.8 nM, 108% Glu Max) with good CNS penetration (Kp = 0.45, Kp,uu = 0.70) and enantiopreference. Finally, VU6022296 displayed robust, dose-dependent efficacy in reversing Haloperidol-Induced Catalepsy (HIC), a rodent preclinical Parkinson's disease model.


Subject(s)
Catalepsy/drug therapy , Disease Models, Animal , Drug Discovery , Neuroprotective Agents/pharmacology , Parkinson Disease/drug therapy , Receptors, Metabotropic Glutamate/antagonists & inhibitors , Allosteric Regulation/drug effects , Animals , Catalepsy/chemically induced , Dose-Response Relationship, Drug , Haloperidol , Mice , Molecular Structure , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/chemistry , Receptors, Metabotropic Glutamate/metabolism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...