Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
EMBO Rep ; 22(2): e48961, 2021 02 03.
Article in English | MEDLINE | ID: mdl-33512764

ABSTRACT

Endothelial tip cells are essential for VEGF-induced angiogenesis, but underlying mechanisms are elusive. The Ena/VASP protein family, consisting of EVL, VASP, and Mena, plays a pivotal role in axon guidance. Given that axonal growth cones and endothelial tip cells share many common features, from the morphological to the molecular level, we investigated the role of Ena/VASP proteins in angiogenesis. EVL and VASP, but not Mena, are expressed in endothelial cells of the postnatal mouse retina. Global deletion of EVL (but not VASP) compromises the radial sprouting of the vascular plexus in mice. Similarly, endothelial-specific EVL deletion compromises the radial sprouting of the vascular plexus and reduces the endothelial tip cell density and filopodia formation. Gene sets involved in blood vessel development and angiogenesis are down-regulated in EVL-deficient P5-retinal endothelial cells. Consistently, EVL deletion impairs VEGF-induced endothelial cell proliferation and sprouting, and reduces the internalization and phosphorylation of VEGF receptor 2 and its downstream signaling via the MAPK/ERK pathway. Together, we show that endothelial EVL regulates sprouting angiogenesis via VEGF receptor-2 internalization and signaling.


Subject(s)
Cell Adhesion Molecules/physiology , Endothelial Cells , Neovascularization, Physiologic , Vascular Endothelial Growth Factor Receptor-2 , Animals , Endothelial Cells/metabolism , Mice , Morphogenesis , Signal Transduction , Vascular Endothelial Growth Factor Receptor-2/genetics , Vascular Endothelial Growth Factor Receptor-2/metabolism
2.
Acta Physiol (Oxf) ; 228(1): e13325, 2020 01.
Article in English | MEDLINE | ID: mdl-31162891

ABSTRACT

AIM: Protein kinase (PK) A anchoring protein (AKAP) 12 is a scaffolding protein that anchors PKA to compartmentalize cyclic AMP signalling. This study assessed the consequences of the downregulation or deletion of AKAP12 on endothelial cell migration and angiogenesis. METHODS: The consequences of siRNA-mediated downregulation AKAP12 were studied in primary cultures of human endothelial cells as well as in endothelial cells and retinas from wild-type versus AKAP12-/- mice. Molecular interactions were investigated using a combination of immunoprecipitation and mass spectrometry. RESULTS: AKAP12 was expressed at low levels in confluent endothelial cells but its expression was increased in actively migrating cells, where it localized to lamellipodia. In the postnatal retina, AKAP12 was expressed by actively migrating tip cells at the angiogenic front, and its deletion resulted in defective extension of the vascular plexus. In migrating endothelial cells, AKAP12 was co-localized with the PKA type II-α regulatory subunit as well as multiple key regulators of actin dynamics and actin filament-based movement; including components of the Arp2/3 complex and the vasodilator-stimulated phosphoprotein (VASP). Fitting with the evidence of a physical VASP/AKAP12/PKA complex, it was possible to demonstrate that the VEGF-stimulated and PKA-dependent phosphorylation of VASP was dependent on AKAP12. Indeed, AKAP12 colocalized with phospho-Ser157 VASP at the leading edge of migrating endothelial cells. CONCLUSION: The results suggest that compartmentalized AKAP12/PKA signalling mediates VASP phosphorylation at the leading edge of migrating endothelial cells to translate angiogenic stimuli into altered actin dynamics and cell movement.


Subject(s)
A Kinase Anchor Proteins/metabolism , Cell Cycle Proteins/metabolism , Endothelial Cells/drug effects , Vascular Endothelial Growth Factor A/pharmacology , A Kinase Anchor Proteins/genetics , Animals , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Cell Cycle Proteins/genetics , Cell Movement/drug effects , Cell Movement/physiology , Cyclic AMP-Dependent Protein Kinases/genetics , Cyclic AMP-Dependent Protein Kinases/metabolism , Endothelial Cells/physiology , Gene Expression Regulation/drug effects , Gene Expression Regulation/physiology , Mice , Mice, Knockout , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Phosphoproteins/genetics , Phosphoproteins/metabolism , Phosphorylation , Vascular Endothelial Growth Factor A/administration & dosage
3.
EMBO J ; 38(17): e100938, 2019 09 02.
Article in English | MEDLINE | ID: mdl-31328803

ABSTRACT

Decreased nitric oxide (NO) bioavailability and oxidative stress are hallmarks of endothelial dysfunction and cardiovascular diseases. Although numerous proteins are S-nitrosated, whether and how changes in protein S-nitrosation influence endothelial function under pathophysiological conditions remains unknown. We report that active endothelial NO synthase (eNOS) interacts with and S-nitrosates pyruvate kinase M2 (PKM2), which reduces PKM2 activity. PKM2 inhibition increases substrate flux through the pentose phosphate pathway to generate reducing equivalents (NADPH and GSH) and protect against oxidative stress. In mice, the Tyr656 to Phe mutation renders eNOS insensitive to inactivation by oxidative stress and prevents the decrease in PKM2 S-nitrosation and reducing equivalents, thereby delaying cardiovascular disease development. These findings highlight a novel mechanism linking NO bioavailability to antioxidant responses in endothelial cells through S-nitrosation and inhibition of PKM2.


Subject(s)
Amino Acid Substitution , Nitric Oxide Synthase Type III/metabolism , Nitric Oxide/metabolism , Pyruvate Kinase/metabolism , Animals , Cells, Cultured , Endothelial Cells , Homeostasis , Humans , Male , Mice , Nitric Oxide Synthase Type III/genetics , Oxidation-Reduction , Pentose Phosphate Pathway , Protein Binding
4.
Int J Mol Sci ; 19(9)2018 Sep 13.
Article in English | MEDLINE | ID: mdl-30217073

ABSTRACT

AMP-activated protein kinase (AMPK) is frequently reported to phosphorylate Ser1177 of the endothelial nitric-oxide synthase (eNOS), and therefore, is linked with a relaxing effect. However, previous studies failed to consistently demonstrate a major role for AMPK on eNOS-dependent relaxation. As AMPK also phosphorylates eNOS on the inhibitory Thr495 site, this study aimed to determine the role of AMPKα1 and α2 subunits in the regulation of NO-mediated vascular relaxation. Vascular reactivity to phenylephrine and acetylcholine was assessed in aortic and carotid artery segments from mice with global (AMPKα-/-) or endothelial-specific deletion (AMPKαΔEC) of the AMPKα subunits. In control and AMPKα1-depleted human umbilical vein endothelial cells, eNOS phosphorylation on Ser1177 and Thr495 was assessed after AMPK activation with thiopental or ionomycin. Global deletion of the AMPKα1 or α2 subunit in mice did not affect vascular reactivity. The endothelial-specific deletion of the AMPKα1 subunit attenuated phenylephrine-mediated contraction in an eNOS- and endothelium-dependent manner. In in vitro studies, activation of AMPK did not alter the phosphorylation of eNOS on Ser1177, but increased its phosphorylation on Thr495. Depletion of AMPKα1 in cultured human endothelial cells decreased Thr495 phosphorylation without affecting Ser1177 phosphorylation. The results of this study indicate that AMPKα1 targets the inhibitory phosphorylation Thr495 site in the calmodulin-binding domain of eNOS to attenuate basal NO production and phenylephrine-induced vasoconstriction.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Nitric Oxide Synthase Type III/metabolism , Nitric Oxide/metabolism , AMP-Activated Protein Kinases/genetics , Animals , Endothelial Cells/metabolism , Humans , Mice , Mice, Knockout , Phenylephrine/metabolism , Phosphorylation , Vasoconstriction/genetics , Vasoconstriction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...