Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 14(11): e0224876, 2019.
Article in English | MEDLINE | ID: mdl-31703095

ABSTRACT

Gene-environment interactions contribute to the risk for Autism Spectrum Disorder (ASD). Among environmental factors, prenatal exposure to stress may increase the risk for ASD. To examine if there is an interaction between exposure to maternal stress and reduced dosage or loss of Shank3, wild-type (WT), heterozygous (HET) and homozygous (HOM) female mice carrying a deletion of exons four through nine of Shank3 (Shank3ex4-9) were exposed to chronic unpredictable mild stress (CUMS) from prior to conception throughout gestation. This study examined maternal care of these dams and the white matter microstructure in the brains of their adult male offspring. Overall, our findings suggest that maternal exposure to CUMS increased pup-directed care for dams of all three genotypes. Compared to WT and HET dams, HOM dams also exhibited increased maternal care behaviors with increased time spent in the nest and reduced cage exploration, regardless of exposure to CUMS. Diffusion tensor imaging showed higher mean fractional anisotropy in the hippocampal stratum radiatum of WT and HOM male offspring from dams exposed to CUMS and HOM offspring from unexposed dams, compared to WT male offspring from unexposed dams. These data support that CUMS in Shank3-mutant dams results in subtle maternal care alterations and long-lasting changes in the white matter of the hippocampus of their offspring.


Subject(s)
Maternal Exposure , Nerve Tissue Proteins/genetics , Prenatal Exposure Delayed Effects , Stress, Psychological , White Matter/metabolism , White Matter/physiopathology , Animals , Behavior, Animal , Diffusion Tensor Imaging , Female , Hippocampus/metabolism , Hippocampus/physiopathology , Male , Maternal Behavior , Mice , Microfilament Proteins , Mutation , Pregnancy , White Matter/diagnostic imaging
2.
J Am Heart Assoc ; 6(8)2017 Aug 15.
Article in English | MEDLINE | ID: mdl-28862938

ABSTRACT

BACKGROUND: Newly developed white matter (WM) injury is common after cardiopulmonary bypass (CPB) in severe/complex congenital heart disease. Fractional anisotropy (FA) allows measurement of macroscopic organization of WM pathology but has rarely been applied after CPB. The aims of our animal study were to define CPB-induced FA alterations and to determine correlations between these changes and cellular events after congenital heart disease surgery. METHODS AND RESULTS: Normal porcine WM development was first assessed between 3 and 7 weeks of age: 3-week-old piglets were randomly assigned to 1 of 3 CPB-induced insults. FA was analyzed in 31 WM structures. WM oligodendrocytes, astrocytes, and microglia were assessed immunohistologically. Normal porcine WM development resembles human WM development in early infancy. We found region-specific WM vulnerability to insults associated with CPB. FA changes after CPB were also insult dependent. Within various WM areas, WM within the frontal cortex was susceptible, suggesting that FA in the frontal cortex should be a biomarker for WM injury after CPB. FA increases occur parallel to cellular processes of WM maturation during normal development; however, they are altered following surgery. CPB-induced oligodendrocyte dysmaturation, astrogliosis, and microglial expansion affect these changes. FA enabled capturing CPB-induced cellular events 4 weeks postoperatively. Regions most resilient to CPB-induced FA reduction were those that maintained mature oligodendrocytes. CONCLUSIONS: Reducing alterations of oligodendrocyte development in the frontal cortex can be both a metric and a goal to improve neurodevelopmental impairment in the congenital heart disease population. Studies using this model can provide important data needed to better interpret human imaging studies.


Subject(s)
Cardiopulmonary Bypass/adverse effects , Cell Differentiation , Frontal Lobe/pathology , Leukoencephalopathies/etiology , Oligodendroglia/pathology , White Matter/pathology , Age Factors , Animals , Anisotropy , Astrocytes/pathology , Biomarkers/metabolism , Diffusion Magnetic Resonance Imaging , Diffusion Tensor Imaging , Frontal Lobe/diagnostic imaging , Frontal Lobe/metabolism , Immunohistochemistry , Leukoencephalopathies/diagnostic imaging , Leukoencephalopathies/metabolism , Leukoencephalopathies/pathology , Microglia/pathology , Models, Animal , Oligodendroglia/metabolism , Sus scrofa , Time Factors , White Matter/diagnostic imaging , White Matter/metabolism
4.
Nat Commun ; 8: 14338, 2017 02 06.
Article in English | MEDLINE | ID: mdl-28165011

ABSTRACT

Neurodegenerative diseases characterized by aberrant accumulation of undigested cellular components represent unmet medical conditions for which the identification of actionable targets is urgently needed. Here we identify a pharmacologically actionable pathway that controls cellular clearance via Akt modulation of transcription factor EB (TFEB), a master regulator of lysosomal pathways. We show that Akt phosphorylates TFEB at Ser467 and represses TFEB nuclear translocation independently of mechanistic target of rapamycin complex 1 (mTORC1), a known TFEB inhibitor. The autophagy enhancer trehalose activates TFEB by diminishing Akt activity. Administration of trehalose to a mouse model of Batten disease, a prototypical neurodegenerative disease presenting with intralysosomal storage, enhances clearance of proteolipid aggregates, reduces neuropathology and prolongs survival of diseased mice. Pharmacological inhibition of Akt promotes cellular clearance in cells from patients with a variety of lysosomal diseases, thus suggesting broad applicability of this approach. These findings open new perspectives for the clinical translation of TFEB-mediated enhancement of cellular clearance in neurodegenerative storage diseases.


Subject(s)
Autophagy/drug effects , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Neurodegenerative Diseases/drug therapy , Neuroprotective Agents/pharmacology , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Trehalose/pharmacology , Animals , Astrocytes , Autophagy/physiology , Brain/cytology , Brain/drug effects , Brain/pathology , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Disease Models, Animal , Fibroblasts , Gene Knockdown Techniques , HeLa Cells , Heterocyclic Compounds, 3-Ring/pharmacology , Humans , Male , Mechanistic Target of Rapamycin Complex 1/metabolism , Membrane Glycoproteins/genetics , Mice , Mice, Transgenic , Molecular Chaperones/genetics , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology , Neurons , Neuroprotective Agents/therapeutic use , Phosphorylation , Primary Cell Culture , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Trehalose/therapeutic use
5.
J Physiol ; 594(21): 6395-6405, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27555555

ABSTRACT

KEY POINTS: Inhibiting Nox2 reactive oxygen species (ROS) production reduced in vivo calcium influx in dystrophic muscle. The lack of Nox2 ROS production protected against decreased in vivo muscle function in dystrophic mice. Manganese-enhanced magnetic resonance imaging (MEMRI) was able to detect alterations in basal calcium levels in skeletal muscle and differentiate disease status. Administration of Mn2+ did not affect muscle function or the health of the animal, and Mn2+ was cleared from skeletal muscle rapidly. We conclude that MEMRI may be a viable, non-invasive technique to monitor molecular alterations in disease progression and evaluate the effectiveness of potential therapies for Duchenne muscular dystrophy. ABSTRACT: Duchenne muscular dystrophy (DMD) is an X-linked progressive degenerative disease resulting from a mutation in the gene that encodes dystrophin, leading to decreased muscle mechanical stability and force production. Increased Nox2 reactive oxygen species (ROS) production and sarcolemmal Ca2+ influx are early indicators of disease pathology, and eliminating Nox2 ROS production reduces aberrant Ca2+ influx in young mdx mice, a model of DMD. Various imaging modalities have been used to study dystrophic muscle in vivo; however, they are based upon alterations in muscle morphology or inflammation. Manganese has been used for indirect monitoring of calcium influx across the sarcolemma and may allow detection of molecular alterations in disease progression in vivo using manganese-enhanced magnetic resonance imaging (MEMRI). Therefore, we hypothesized that eliminating Nox2 ROS production would decrease calcium influx in adult mdx mice and that MEMRI would be able to monitor and differentiate disease status in dystrophic muscle. Both in vitro and in vivo data demonstrate that eliminating Nox2 ROS protected against aberrant Ca2+ influx and improved muscle function in dystrophic muscle. MEMRI was able to differentiate between different pathological states in vivo, with no long-term effects on animal health or muscle function. We conclude that MEMRI is a viable, non-invasive technique to differentiate disease status and might provide a means to monitor and evaluate the effectiveness of potential therapies in dystrophic muscle.


Subject(s)
Calcium/metabolism , Membrane Glycoproteins/genetics , Muscle, Skeletal/metabolism , Muscular Dystrophy, Duchenne/metabolism , NADPH Oxidases/genetics , Reactive Oxygen Species/metabolism , Animals , Magnetic Resonance Imaging/methods , Manganese/pharmacokinetics , Membrane Glycoproteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Inbred mdx , Muscle, Skeletal/diagnostic imaging , Muscular Dystrophy, Duchenne/diagnostic imaging , Muscular Dystrophy, Duchenne/genetics , NADPH Oxidase 2 , NADPH Oxidases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...