Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 210
Filter
1.
Plant Physiol ; 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38593032

ABSTRACT

Trehalose 6-phosphate (Tre6P) is an essential signal metabolite that regulates the level of sucrose, linking growth and development to the metabolic status. We hypothesized that Tre6P plays a role in mediating the regulation of gene expression by sucrose. To test this, we performed transcriptomic profiling on Arabidopsis (Arabidopsis thaliana) plants that expressed a bacterial TREHALOSE 6-PHOSPHATE SYNTHASE (TPS) under the control of an ethanol-inducible promoter. Induction led to a 4-fold rise in Tre6P levels, a concomitant decrease in sucrose, significant changes (FDR ≤ 0.05) of over 13,000 transcripts, and two-fold or larger changes of over 5000 transcripts. Comparison with nine published responses to sugar availability allowed some of these changes to be linked to the rise in Tre6P, while others were probably due to lower sucrose or other indirect effects. Changes linked to Tre6P included repression of photosynthesis-related gene expression and induction of many growth-related processes including ribosome biogenesis. About 500 starvation-related genes are known to be induced by SUCROSE-NON-FERMENTING-1-RELATED KINASE 1 (SnRK1). They were largely repressed by Tre6P in a manner consistent with SnRK1 inhibition by Tre6P. SnRK1 also represses many genes that are involved in biosynthesis and growth. These responded to Tre6P in a more complex manner, pointing toward Tre6P interacting with other C-signaling pathways. Additionally, elevated Tre6P modified the expression of genes encoding regulatory subunits of the SnRK1 complex and TPS class II and FCS-LIKE ZINC FINGER proteins that are thought to modulate SnRK1 function and genes involved in circadian, TARGET OF RAPAMYCIN-, light, abscisic acid, and other hormone signaling.

2.
Semin Cell Dev Biol ; 155(Pt A): 23-36, 2024 03 01.
Article in English | MEDLINE | ID: mdl-36959059

ABSTRACT

The Calvin-Benson cycle (CBC) evolved over 2 billion years ago but has been subject to massive selection due to falling atmospheric carbon dioxide, rising atmospheric oxygen and changing nutrient and water availability. In addition, large groups of organisms have evolved carbon-concentrating mechanisms (CCMs) that operate upstream of the CBC. Most previous studies of CBC diversity focused on Rubisco kinetics and regulation. Quantitative metabolite profiling provides a top-down strategy to uncover inter-species diversity in CBC operation. CBC profiles were recently published for twenty species including terrestrial C3 species, terrestrial C4 species that operate a biochemical CCM, and cyanobacteria and green algae that operate different types of biophysical CCM. Distinctive profiles were found for species with different modes of photosynthesis, revealing that evolution of the various CCMs was accompanied by co-evolution of the CBC. Diversity was also found between species that share the same mode of photosynthesis, reflecting lineage-dependent diversity of the CBC. Connectivity analysis uncovers constraints due to pathway and thermodynamic topology, and reveals that cross-species diversity in the CBC is driven by changes in the balance between regulated enzymes and in the balance between the CBC and the light reactions or end-product synthesis.


Subject(s)
Nutrients , Photosynthesis , Biophysics , Kinetics , Oxygen
3.
Plant Physiol ; 192(1): 387-408, 2023 05 02.
Article in English | MEDLINE | ID: mdl-36725081

ABSTRACT

Sucrose-nonfermenting 1 (SNF1)-related kinase 1 (SnRK1) is a central hub in carbon and energy signaling in plants, and is orthologous with SNF1 in yeast and the AMP-activated protein kinase (AMPK) in animals. Previous studies of SnRK1 relied on in vitro activity assays or monitoring of putative marker gene expression. Neither approach gives unambiguous information about in vivo SnRK1 activity. We have monitored in vivo SnRK1 activity using Arabidopsis (Arabidopsis thaliana) reporter lines that express a chimeric polypeptide with an SNF1/SnRK1/AMPK-specific phosphorylation site. We investigated responses during an equinoctial diel cycle and after perturbing this cycle. As expected, in vivo SnRK1 activity rose toward the end of the night and rose even further when the night was extended. Unexpectedly, although sugars rose after dawn, SnRK1 activity did not decline until about 12 h into the light period. The sucrose signal metabolite, trehalose 6-phosphate (Tre6P), has been shown to inhibit SnRK1 in vitro. We introduced the SnRK1 reporter into lines that harbored an inducible trehalose-6-phosphate synthase construct. Elevated Tre6P decreased in vivo SnRK1 activity in the light period, but not at the end of the night. Reporter polypeptide phosphorylation was sometimes negatively correlated with Tre6P, but a stronger and more widespread negative correlation was observed with glucose-6-phosphate. We propose that SnRK1 operates within a network that controls carbon utilization and maintains diel sugar homeostasis, that SnRK1 activity is regulated in a context-dependent manner by Tre6P, probably interacting with further inputs including hexose phosphates and the circadian clock, and that SnRK1 signaling is modulated by factors that act downstream of SnRK1.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Animals , Arabidopsis/metabolism , Phosphorylation , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , AMP-Activated Protein Kinases/metabolism , Photoperiod , Sucrose/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism
4.
Sci Adv ; 8(23): eabo3416, 2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35675400

ABSTRACT

Aromatic compounds having unusual stability provide high-value chemicals and considerable promise for carbon storage. Terrestrial plants can convert atmospheric CO2 into diverse and abundant aromatic compounds. However, it is unclear how plants control the shikimate pathway that connects the photosynthetic carbon fixation with the biosynthesis of aromatic amino acids, the major precursors of plant aromatic natural products. This study identified suppressor of tyra2 (sota) mutations that deregulate the first step in the plant shikimate pathway by alleviating multiple effector-mediated feedback regulation in Arabidopsis thaliana. The sota mutant plants showed hyperaccumulation of aromatic amino acids accompanied by up to a 30% increase in net CO2 assimilation. The identified mutations can be used to enhance plant-based, sustainable conversion of atmospheric CO2 to high-energy and high-value aromatic compounds.

5.
Plant Physiol ; 190(1): 280-304, 2022 08 29.
Article in English | MEDLINE | ID: mdl-35751609

ABSTRACT

C4 photosynthesis allows faster photosynthetic rates and higher water and nitrogen use efficiency than C3 photosynthesis, but at the cost of lower quantum yield due to the energy requirement of its biochemical carbon concentration mechanism. It has also been suspected that its operation may be impaired in low irradiance. To investigate fluxes under moderate and low irradiance, maize (Zea mays) was grown at 550 µmol photons m-2 s-l and 13CO2 pulse-labeling was performed at growth irradiance or several hours after transfer to 160 µmol photons m-2 s-1. Analysis by liquid chromatography/tandem mass spectrometry or gas chromatography/mass spectrometry provided information about pool size and labeling kinetics for 32 metabolites and allowed estimation of flux at many steps in C4 photosynthesis. The results highlighted several sources of inefficiency in low light. These included excess flux at phosphoenolpyruvate carboxylase, restriction of decarboxylation by NADP-malic enzyme, and a shift to increased CO2 incorporation into aspartate, less effective use of metabolite pools to drive intercellular shuttles, and higher relative and absolute rates of photorespiration. The latter provides evidence for a lower bundle sheath CO2 concentration in low irradiance, implying that operation of the CO2 concentration mechanism is impaired in this condition. The analyses also revealed rapid exchange of carbon between the Calvin-Benson cycle and the CO2-concentration shuttle, which allows rapid adjustment of the balance between CO2 concentration and assimilation, and accumulation of large amounts of photorespiratory intermediates in low light that provides a major carbon reservoir to build up C4 metabolite pools when irradiance increases.


Subject(s)
Carbon Dioxide , Zea mays , Carbon/metabolism , Carbon Dioxide/metabolism , Kinetics , Photosynthesis , Plant Leaves/metabolism , Zea mays/metabolism
6.
Plant Physiol ; 189(4): 2332-2356, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35567528

ABSTRACT

Many plants, including Arabidopsis (Arabidopsis thaliana), accumulate starch in the daytime and remobilize it to support maintenance and growth at night. Starch accumulation is increased when carbon is in short supply, for example, in short photoperiods. Mobilization is paced to exhaust starch around dawn, as anticipated by the circadian clock. This diel pattern of turnover is largely robust against loss of day, dawn, dusk, or evening clock components. Here, we investigated diel starch turnover in the triple circadian clock mutant lhy cca1 elf3, which lacks the LATE ELONGATED HYPOCOTYL and the CIRCADIAN CLOCK-ASSOCIATED1 (CCA1) dawn components and the EARLY FLOWERING3 (ELF3) evening components of the circadian clock. The diel oscillations of transcripts for the remaining clock components and related genes like REVEILLE and PHYTOCHROME-INTERACING FACTOR family members exhibited attenuated amplitudes and altered peak time, weakened dawn dominance, and decreased robustness against changes in the external light-dark cycle. The triple mutant was unable to increase starch accumulation in short photoperiods. However, it was still able to pace starch mobilization to around dawn in different photoperiods and growth irradiances and to around 24 h after the previous dawn in T17 and T28 cycles. The triple mutant was able to slow down starch mobilization after a sudden low-light day or a sudden early dusk, although in the latter case it did not fully compensate for the lengthened night. Overall, there was a slight trend to less linear mobilization of starch. Thus, starch mobilization can be paced rather robustly to dawn despite a major disruption of the transcriptional clock. It is proposed that temporal information can be delivered from clock components or a semi-autonomous oscillator.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Circadian Clocks , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Circadian Clocks/genetics , Circadian Rhythm/genetics , DNA-Binding Proteins/genetics , Gene Expression Regulation, Plant , Hypocotyl/genetics , Hypocotyl/metabolism , Starch/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
7.
Plant Physiol ; 189(4): 1976-2000, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35486376

ABSTRACT

Many plants, including Arabidopsis (Arabidopsis thaliana), accumulate starch in the light and remobilize it to support maintenance and growth at night. Starch synthesis and degradation are usually viewed as temporally separate processes. Recently, we reported that starch is also degraded in the light. Degradation rates are generally low early in the day but rise with time. Here, we show that the rate of degradation in the light depends on time relative to dawn rather than dusk. We also show that degradation in the light is inhibited by trehalose 6-phosphate, a signal for sucrose availability. The observed responses of degradation in the light can be simulated by a skeletal model in which the rate of degradation is a function of starch content divided by time remaining until dawn. The fit is improved by extension to include feedback inhibition of starch degradation by trehalose 6-phosphate. We also investigate possible functions of simultaneous starch synthesis and degradation in the light, using empirically parameterized models and experimental approaches. The idea that this cycle buffers growth against falling rates of photosynthesis at twilight is supported by data showing that rates of protein and cell wall synthesis remain high during a simulated dusk twilight. Degradation of starch in the light may also counter over-accumulation of starch in long photoperiods and stabilize signaling around dusk. We conclude that starch degradation in the light is regulated by mechanisms similar to those that operate at night and is important for stabilizing carbon availability and signaling, thus optimizing growth in natural light conditions.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Carbon/metabolism , Phosphates/metabolism , Photosynthesis/physiology , Starch/metabolism , Trehalose/metabolism
8.
Nat Plants ; 8(5): 574-582, 2022 05.
Article in English | MEDLINE | ID: mdl-35484201

ABSTRACT

Many plants accumulate transitory starch reserves in their leaves during the day to buffer their carbohydrate supply against fluctuating light conditions, and to provide carbon and energy for survival at night. It is universally accepted that transitory starch is synthesized from ADP-glucose (ADPG) in the chloroplasts. However, the consensus that ADPG is made in the chloroplasts by ADPG pyrophosphorylase has been challenged by a controversial proposal that ADPG is made primarily in the cytosol, probably by sucrose synthase (SUS), and then imported into the chloroplasts. To resolve this long-standing controversy, we critically re-examined the experimental evidence that appears to conflict with the consensus pathway. We show that when precautions are taken to avoid artefactual changes during leaf sampling, Arabidopsis thaliana mutants that lack SUS activity in mesophyll cells (quadruple sus1234) or have no SUS activity (sextuple sus123456) have wild-type levels of ADPG and starch, while ADPG is 20 times lower in the pgm and adg1 mutants that are blocked in the consensus chloroplastic pathway of starch synthesis. We conclude that the ADPG needed for starch synthesis in leaves is synthesized primarily by ADPG pyrophosphorylase in the chloroplasts.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Adenosine Diphosphate Glucose/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Glucose-1-Phosphate Adenylyltransferase/metabolism , Glucosyltransferases , Plant Leaves/metabolism , Starch/metabolism , Sucrose/metabolism
9.
Front Plant Sci ; 13: 774060, 2022.
Article in English | MEDLINE | ID: mdl-35222460

ABSTRACT

Starch is a polysaccharide that is stored to be used in different timescales. Transitory starch is used during nighttime when photosynthesis is unavailable. Long-term starch is stored to support vegetative or reproductive growth, reproduction, or stress responses. Starch is not just a reserve of energy for most plants but also has many other roles, such as promoting rapid stomatal opening, making osmoprotectants, cryoprotectants, scavengers of free radicals and signals, and reverting embolised vessels. Biotic and abiotic stress vary according to their nature, strength, duration, developmental stage of the plant, time of the day, and how gradually they develop. The impact of stress on starch metabolism depends on many factors: how the stress impacts the rate of photosynthesis, the affected organs, how the stress impacts carbon allocation, and the energy requirements involved in response to stress. Under abiotic stresses, starch degradation is usually activated, but starch accumulation may also be observed when growth is inhibited more than photosynthesis. Under biotic stresses, starch is usually accumulated, but the molecular mechanisms involved are largely unknown. In this mini-review, we explore what has been learned about starch metabolism and plant stress responses and discuss the current obstacles to fully understanding their interactions.

10.
J Exp Bot ; 73(5): 1581-1601, 2022 03 02.
Article in English | MEDLINE | ID: mdl-34910813

ABSTRACT

C4 photosynthesis concentrates CO2 around Rubisco in the bundle sheath, favouring carboxylation over oxygenation and decreasing photorespiration. This complex trait evolved independently in >60 angiosperm lineages. Its evolution can be investigated in genera such as Flaveria (Asteraceae) that contain species representing intermediate stages between C3 and C4 photosynthesis. Previous studies have indicated that the first major change in metabolism probably involved relocation of glycine decarboxylase and photorespiratory CO2 release to the bundle sheath and establishment of intercellular shuttles to maintain nitrogen stoichiometry. This was followed by selection for a CO2-concentrating cycle between phosphoenolpyruvate carboxylase in the mesophyll and decarboxylases in the bundle sheath, and relocation of Rubisco to the latter. We have profiled 52 metabolites in nine Flaveria species and analysed 13CO2 labelling patterns for four species. Our results point to operation of multiple shuttles, including movement of aspartate in C3-C4 intermediates and a switch towards a malate/pyruvate shuttle in C4-like species. The malate/pyruvate shuttle increases from C4-like to complete C4 species, accompanied by a rise in ancillary organic acid pools. Our findings support current models and uncover further modifications of metabolism along the evolutionary path to C4 photosynthesis in the genus Flaveria.


Subject(s)
Flaveria , Flaveria/genetics , Flaveria/metabolism , Glycine Dehydrogenase (Decarboxylating)/genetics , Glycine Dehydrogenase (Decarboxylating)/metabolism , Metabolome , Photosynthesis , Ribulose-Bisphosphate Carboxylase/genetics , Ribulose-Bisphosphate Carboxylase/metabolism
11.
Nat Plants ; 8(1): 78-91, 2022 01.
Article in English | MEDLINE | ID: mdl-34949804

ABSTRACT

Photosynthesis-related pathways are regarded as a promising avenue for crop improvement. Whilst empirical studies have shown that photosynthetic efficiency is higher in microalgae than in C3 or C4 crops, the underlying reasons remain unclear. Using a tailor-made microfluidics labelling system to supply 13CO2 at steady state, we investigated in vivo labelling kinetics in intermediates of the Calvin Benson cycle and sugar, starch, organic acid and amino acid synthesis pathways, and in protein and lipids, in Chlamydomonas reinhardtii, Chlorella sorokiniana and Chlorella ohadii, which is the fastest growing green alga on record. We estimated flux patterns in these algae and compared them with published and new data from C3 and C4 plants. Our analyses identify distinct flux patterns supporting faster growth in photosynthetic cells, with some of the algae exhibiting faster ribulose 1,5-bisphosphate regeneration and increased fluxes through the lower glycolysis and anaplerotic pathways towards the tricarboxylic acid cycle, amino acid synthesis and lipid synthesis than in higher plants.


Subject(s)
Carbon , Chlorella , Carbon/metabolism , Carbon Cycle , Carbon Dioxide/metabolism , Chlorella/metabolism , Crops, Agricultural/metabolism , Photosynthesis
12.
Sci Adv ; 7(51): eabi8307, 2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34919428

ABSTRACT

Photosynthetically produced electrons provide energy for various metabolic pathways, including carbon reduction. Four Calvin-Benson cycle enzymes and several other plastid proteins are activated in the light by reduction of specific cysteines via thioredoxins, a family of electron transporters operating in redox regulation networks. How does this network link the photosynthetic chain with cellular metabolism? Using a time-resolved redox proteomic method, we have investigated the redox network in vivo during the dark­to­low light transition. We show that redox states of some thioredoxins follow the photosynthetic linear electron transport rate. While some redox targets have kinetics compatible with an equilibrium with one thioredoxin (TRXf), reduction of other proteins shows specific kinetic limitations, allowing fine-tuning of each redox-regulated step of chloroplast metabolism. We identified five new redox-regulated proteins, including proteins involved in Mg2+ transport and 1O2 signaling. Our results provide a system-level functional view of the photosynthetic redox regulation network.

13.
Plant Physiol ; 187(3): 1357-1373, 2021 11 03.
Article in English | MEDLINE | ID: mdl-34618060

ABSTRACT

SNF1-related Kinase 1 (SnRK1) is an evolutionarily conserved protein kinase with key functions in energy management during stress responses in plants. To address a potential role of SnRK1 under favorable conditions, we performed a metabolomic and transcriptomic characterization of rosettes of 20-d-old Arabidopsis (Arabidopsis thaliana) plants of SnRK1 gain- and loss-of-function mutants during the regular diel cycle. Our results show that SnRK1 manipulation alters the sucrose and trehalose 6-phosphate (Tre6P) relationship, influencing how the sucrose content is translated into Tre6P accumulation and modulating the flux of carbon to the tricarboxylic acid cycle downstream of Tre6P signaling. On the other hand, daily cycles of Tre6P accumulation were accompanied by changes in SnRK1 signaling, leading to a maximum in the expression of SnRK1-induced genes at the end of the night, when Tre6P levels are lowest, and to a minimum at the end of the day, when Tre6P levels peak. The expression of SnRK1-induced genes was strongly reduced by transient Tre6P accumulation in an inducible Tre6P synthase (otsA) line, further suggesting the involvement of Tre6P in the diel oscillations in SnRK1 signaling. Transcriptional profiling of wild-type plants and SnRK1 mutants also uncovered defects that are suggestive of an iron sufficiency response and of a matching induction of sulfur acquisition and assimilation when SnRK1 is depleted. In conclusion, under favorable growth conditions, SnRK1 plays a role in sucrose homeostasis and transcriptome remodeling in autotrophic tissues and its activity is influenced by diel fluctuations in Tre6P levels.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Homeostasis , Protein Serine-Threonine Kinases/genetics , Sucrose/metabolism , Transcriptome , Arabidopsis/enzymology , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Circadian Rhythm , Protein Serine-Threonine Kinases/metabolism
14.
J Exp Bot ; 72(17): 5961-5986, 2021 09 02.
Article in English | MEDLINE | ID: mdl-34473300

ABSTRACT

Improving photosynthesis is a promising avenue to increase crop yield. This will be aided by better understanding of natural variance in photosynthesis. Profiling of Calvin-Benson cycle (CBC) metabolites provides a top-down strategy to uncover interspecies diversity in CBC operation. In a study of four C4 and five C3 species, principal components analysis separated C4 species from C3 species and also separated different C4 species. These separations were driven by metabolites that reflect known species differences in their biochemistry and pathways. Unexpectedly, there was also considerable diversity between the C3 species. Falling atmospheric CO2 and changing temperature, nitrogen, and water availability have driven evolution of C4 photosynthesis in multiple lineages. We propose that analogous selective pressures drove lineage-dependent evolution of the CBC in C3 species. Examples of species-dependent variation include differences in the balance between the CBC and the light reactions, and in the balance between regulated steps in the CBC. Metabolite profiles also reveal conserved features including inactivation of enzymes in low irradiance, and maintenance of CBC metabolites at relatively high levels in the absence of net CO2 fixation. These features may be important for photosynthetic efficiency in low light, fluctuating irradiance, and when stomata close due to low water availability.


Subject(s)
Carbon Dioxide , Photosynthesis , Carbon Cycle
15.
Curr Protoc ; 1(5): e114, 2021 May.
Article in English | MEDLINE | ID: mdl-34000100

ABSTRACT

Plants continually synthesize and degrade proteins, for example, to adjust protein content during development or during adaptation to new environments. In order to estimate global protein synthesis and degradation rates in plants, we developed a relatively simple and inexpensive method using a combination of 13 CO2 labeling and mass spectrometry-based analyses. Arabidopsis thaliana plants are subjected to a 24-hr 13 CO2 pulse followed by a 4-day 12 CO2 chase. Soluble alanine and serine from total protein and glucose from cell wall material are analyzed by gas chromatography time-of-flight mass spectrometry (GC-TOF-MS) and their 13 C enrichment (%) is estimated. The rate of protein synthesis during the 13 CO2 pulse experiment is defined as the rate of incorporation of labeled amino acids into proteins normalized by a correction factor for incomplete enrichment in free amino acid pools. The rate of protein degradation is estimated as the difference between the rate of protein synthesis and the relative growth rate calculated using the 13 C enrichment of glucose from cell wall material. Degradation rates are also estimated from the 12 CO2 pulse experiment. The following method description includes setting up and performing labeling experiments, preparation and measurement of samples, and calculation steps. In addition, an R script is provided for the calculations. 2021 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Setting up the 13 CO2 labeling system and stable isotope labeling of Arabidopsis thaliana rosette leaves Basic Protocol 2: Extraction of soluble amino acids for GC-TOF-MS analysis Basic Protocol 3: Preparation of amino acids from total protein for GC-TOF-MS analysis Basic Protocol 4: Preparation of sugars from cell wall material for GC-TOF-MS analysis Basis Protocol 5: GC-TOF-MS analysis of 13 C-labeled samples and estimation of 13 C enrichment (%) Basis Protocol 6: Estimation of protein synthesis and degradation rates.


Subject(s)
Arabidopsis , Amino Acids/metabolism , Arabidopsis/metabolism , Gas Chromatography-Mass Spectrometry , Isotope Labeling , Protein Biosynthesis
16.
Mol Plant ; 14(7): 1104-1118, 2021 07 05.
Article in English | MEDLINE | ID: mdl-33798747

ABSTRACT

Protein phosphorylation is a well-established post-translational mechanism that regulates protein functions and metabolic pathways. It is known that several plant mitochondrial proteins are phosphorylated in a reversible manner. However, the identities of the protein kinases/phosphatases involved in this mechanism and their roles in the regulation of the tricarboxylic acid (TCA) cycle remain unclear. In this study, we isolated and characterized plants lacking two mitochondrially targeted phosphatases (Sal2 and PP2c63) along with pyruvate dehydrogenase kinase (PDK). Protein-protein interaction analysis, quantitative phosphoproteomics, and enzymatic analyses revealed that PDK specifically regulates pyruvate dehydrogenase complex (PDC), while PP2c63 nonspecifically regulates PDC. When recombinant PP2c63 and Sal2 proteins were added to mitochondria isolated from mutant plants, protein-protein interaction and enzymatic analyses showed that PP2c63 directly phosphorylates and modulates the activity of PDC, while Sal2 only indirectly affects TCA cycle enzymes. Characterization of steady-state metabolite levels and fluxes in the mutant lines further revealed that these phosphatases regulate flux through the TCA cycle, and that altered metabolism in the sal2 pp2c63 double mutant compromises plant growth. These results are discussed in the context of current models of the control of respiration in plants.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Citric Acid Cycle/genetics , Gene Expression Regulation, Plant , Mitochondria/enzymology , Phosphoprotein Phosphatases/metabolism , Protein Phosphatase 2C/metabolism , Protein Phosphatase 2/metabolism , Pyruvate Dehydrogenase Complex/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Gene Knockout Techniques , Mutation , Phosphoprotein Phosphatases/genetics , Plant Development , Protein Phosphatase 2/genetics , Protein Phosphatase 2C/genetics
17.
J Exp Bot ; 72(8): 3263-3278, 2021 04 02.
Article in English | MEDLINE | ID: mdl-33544130

ABSTRACT

Phytochrome photoreceptors are known to regulate plastic growth responses to vegetation shade. However, recent reports also suggest an important role for phytochromes in carbon resource management, metabolism, and growth. Here, we use 13CO2 labelling patterns in multiallele phy mutants to investigate the role of phytochrome in the control of metabolic fluxes. We also combine quantitative data of 13C incorporation into protein and cell wall polymers, gas exchange measurements, and system modelling to investigate why biomass is decreased in adult multiallele phy mutants. Phytochrome influences the synthesis of stress metabolites such as raffinose and proline, and the accumulation of sugars, possibly through regulating vacuolar sugar transport. Remarkably, despite their modified metabolism and vastly altered architecture, growth rates in adult phy mutants resemble those of wild-type plants. Our results point to delayed seedling growth and smaller cotyledon size as the cause of the adult-stage phy mutant biomass defect. Our data signify a role for phytochrome in metabolic stress physiology and carbon partitioning, and illustrate that phytochrome action at the seedling stage sets the trajectory for adult biomass production.


Subject(s)
Phytochrome , Seedlings/growth & development , Biomass , Cotyledon , Light , Phytochrome B , Stress, Physiological
18.
New Phytol ; 229(4): 2135-2151, 2021 02.
Article in English | MEDLINE | ID: mdl-33068448

ABSTRACT

Trehalose 6-phosphate (Tre6P) is a sucrose signalling metabolite that has been implicated in regulation of shoot branching, but its precise role is not understood. We expressed tagged forms of TREHALOSE-6-PHOSPHATE SYNTHASE1 (TPS1) to determine where Tre6P is synthesized in arabidopsis (Arabidopsis thaliana), and investigated the impact of localized changes in Tre6P levels, in axillary buds or vascular tissues, on shoot branching in wild-type and branching mutant backgrounds. TPS1 is expressed in axillary buds and the subtending vasculature, as well as in the leaf and stem vasculature. Expression of a heterologous Tre6P phosphatase (TPP) to lower Tre6P in axillary buds strongly delayed bud outgrowth in long days and inhibited branching in short days. TPP expression in the vasculature also delayed lateral bud outgrowth and decreased branching. Increased Tre6P in the vasculature enhanced branching and was accompanied by higher expression of FLOWERING LOCUS T (FT) and upregulation of sucrose transporters. Increased vascular Tre6P levels enhanced branching in branched1 but not in ft mutant backgrounds. These results provide direct genetic evidence of a local role for Tre6P in regulation of axillary bud outgrowth within the buds themselves, and also connect Tre6P with systemic regulation of shoot branching via FT.


Subject(s)
Arabidopsis , Sugar Phosphates , Arabidopsis/genetics , Gene Expression Regulation, Plant , Phosphates , Plant Shoots , Trehalose/analogs & derivatives
19.
Plant Biotechnol J ; 19(3): 575-588, 2021 03.
Article in English | MEDLINE | ID: mdl-33016576

ABSTRACT

Introduction of a C4 photosynthetic mechanism into C3 crops offers an opportunity to improve photosynthetic efficiency, biomass and yield in addition to potentially improving nitrogen and water use efficiency. To create a two-cell metabolic prototype for an NADP-malic enzyme type C4 rice, we transformed Oryza sativa spp. japonica cultivar Kitaake with a single construct containing the coding regions of carbonic anhydrase, phosphoenolpyruvate (PEP) carboxylase, NADP-malate dehydrogenase, pyruvate orthophosphate dikinase and NADP-malic enzyme from Zea mays, driven by cell-preferential promoters. Gene expression, protein accumulation and enzyme activity were confirmed for all five transgenes, and intercellular localization of proteins was analysed. 13 CO2 labelling demonstrated a 10-fold increase in flux though PEP carboxylase, exceeding the increase in measured in vitro enzyme activity, and estimated to be about 2% of the maize photosynthetic flux. Flux from malate via pyruvate to PEP remained low, commensurate with the low NADP-malic enzyme activity observed in the transgenic lines. Physiological perturbations were minor and RNA sequencing revealed no substantive effects of transgene expression on other endogenous rice transcripts associated with photosynthesis. These results provide promise that, with enhanced levels of the C4 proteins introduced thus far, a functional C4 pathway is achievable in rice.


Subject(s)
Oryza , Malate Dehydrogenase/genetics , Malate Dehydrogenase/metabolism , Oryza/genetics , Oryza/metabolism , Phosphoenolpyruvate Carboxylase/genetics , Phosphoenolpyruvate Carboxylase/metabolism , Photosynthesis , Pyruvate, Orthophosphate Dikinase/genetics , Pyruvate, Orthophosphate Dikinase/metabolism , Zea mays/metabolism
20.
Front Plant Sci ; 11: 564463, 2020.
Article in English | MEDLINE | ID: mdl-33178234

ABSTRACT

Introduction of a C4 photosynthetic pathway into C3 rice (Oryza sativa) requires installation of a biochemical pump that concentrates CO2 at the site of carboxylation in modified bundle sheath cells. To investigate the feasibility of this, we generated a quadruple line that simultaneously accumulates four of the core C4 photosynthetic enzymes from the NADP-malic enzyme subtype, phosphoenolpyruvate carboxylase (ZmPEPC), NADP-malate dehydrogenase (ZmNADP-MDH), NADP-malic enzyme (ZmNADP-ME), and pyruvate phosphate dikinase (ZmPPDK). This led to enhanced enzyme activity and mild phenotypic perturbations but was largely neutral in its effects on photosynthetic rate. Measurements of the flux of 13CO2 through photosynthetic metabolism revealed a significant increase in the incorporation of 13C into malate, consistent with increased fixation of 13CO2 via PEP carboxylase in lines expressing the maize PEPC enzyme. However, there was no significant differences in labeling of 3-phosphoglycerate (3PGA) indicating that there was no carbon flux through NADP-ME into the Calvin-Benson cycle. There was also no significant difference in labeling of phosphoenolpyruvate (PEP) indicating that there was no carbon flux through PPDK. Crossing the quadruple line with a line with reduced glycine decarboxylase H-protein (OsGDCH) abundance led to a photosynthetic phenotype characteristic of the reduced OsGDCH line and higher labeling of malate, aspartate and citrate than in the quintuple line. There was evidence of 13C labeling of aspartate indicating 13CO2 fixation into oxaloacetate by PEPC and conversion to aspartate by the endogenous aspartate aminotransferase activity. While Kranz anatomy or other anatomical modifications have not yet been installed in these plants to enable a fully functional C4 cycle, these results demonstrate for the first-time a partial flux through the carboxylation phase of NADP-ME C4 metabolism in transgenic rice containing two of the key metabolic steps in the C4 pathway.

SELECTION OF CITATIONS
SEARCH DETAIL
...