Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Geroscience ; 45(4): 2559-2587, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37079217

ABSTRACT

Cellular senescence is a state of permanent growth arrest that plays an important role in wound healing, tissue fibrosis, and tumor suppression. Despite senescent cells' (SnCs) pathological role and therapeutic interest, their phenotype in vivo remains poorly defined. Here, we developed an in vivo-derived senescence signature (SenSig) using a foreign body response-driven fibrosis model in a p16-CreERT2;Ai14 reporter mouse. We identified pericytes and "cartilage-like" fibroblasts as senescent and defined cell type-specific senescence-associated secretory phenotypes (SASPs). Transfer learning and senescence scoring identified these two SnC populations along with endothelial and epithelial SnCs in new and publicly available murine and human data single-cell RNA sequencing (scRNAseq) datasets from diverse pathologies. Signaling analysis uncovered crosstalk between SnCs and myeloid cells via an IL34-CSF1R-TGFßR signaling axis, contributing to tissue balance of vascularization and matrix production. Overall, our study provides a senescence signature and a computational approach that may be broadly applied to identify SnC transcriptional profiles and SASP factors in wound healing, aging, and other pathologies.


Subject(s)
Aging , Cellular Senescence , Humans , Mice , Animals , Cellular Senescence/genetics , Aging/genetics , Phenotype , Fibroblasts , Machine Learning
2.
Immunol Cell Biol ; 98(8): 650-666, 2020 09.
Article in English | MEDLINE | ID: mdl-32392367

ABSTRACT

The metabolically dynamic nature of healthy adipose places this tissue under regular inflammatory stress. A network of adipose-resident anti-inflammatory immune cells modulates and resolves this endogenous inflammation. Previous work in our laboratory identified a CD11b+ Gr1+ subset of these immunosuppressive adipose stromal cells in healthy mice. Myeloid-derived suppressor cells (MDSCs), typically associated with cancer and chronic inflammation, have a similar surface marker phenotype and accumulate in adipose of high-fat diet-fed mice. Given the routine inflammatory stresses on healthy adipose and the suppressive nature of the tissue-resident immune cells, we hypothesized that these CD11b+ Gr1+ cells were a genuine population of MDSCs involved in regulating tissue homeostasis. Flow cytometric analysis of these cells found that they were CD11b+ CD301- Ly6C+ Ly6G+/- and did not express traditional macrophage markers. Moreover, in vitro functional assays demonstrated that these cells suppressed αCD3/αCD28-induced T-cell proliferation, solidifying their identity as bona fide adipose-resident MDSCs. Systemic MDSC depletion altered adipose immune cell dynamics in otherwise healthy mice, increasing the number of CD4+ effector memory T cells and modifying the surface markers expressed by adipose-resident macrophages. In addition, transcription of various immunomodulatory cytokines was clearly dysregulated in the adipose of MDSC-depleted animals compared with controls. Altogether, our findings indicate that there is a population of bona fide MDSCs in the adipose of otherwise healthy mice that actively contribute to the health and immune homeostasis of this tissue.


Subject(s)
Adipose Tissue/immunology , Homeostasis/immunology , Myeloid-Derived Suppressor Cells , Animals , CD11b Antigen , Cytokines , Lymphocyte Activation , Macrophages , Mice , Mice, Inbred C57BL , Myeloid-Derived Suppressor Cells/immunology , T-Lymphocytes
3.
Dis Model Mech ; 13(4)2020 04 06.
Article in English | MEDLINE | ID: mdl-32005714

ABSTRACT

Low-density lipoprotein (LDL) receptor (LDLR) mutations are the primary cause of familial hypercholesterolemia (FH). Class II LDLR mutations result in a misfolded LDLR retained in the endoplasmic reticulum (ER). We have developed a model of FH class II and CRISPR-corrected induced pluripotent stem cells (iPSC) capable of replicating mutant and repaired LDLR functions. We show here that iPSC and derived hepatocyte-like cells (HLC) replicate misfolded LDLR accumulation and restoration of LDLR function in CRISPR-corrected cells. It was reported that model cells overexpressing class II LDLR mutants result in endoplasmic reticulum (ER) accumulation of immature LDLR and activation of the unfolded protein response (UPR). We show here that statins induce a similar accumulation of immature LDLR that is resolved with class II correction. We also demonstrate that, although capable of UPR induction with tunicamycin treatment, unlike overexpression models, statin-treated class II iPSC and derived HLC do not induce the common UPR markers Grp78 (also known as HSPA5) or spliced XBP1 [XBP1 (S)]. Because statins are reported to inhibit UPR, we utilized lipoprotein-deficient serum (LPDS) medium, but still did not detect UPR induction at the Grp78 and XBP1 (S) levels. Our study demonstrates the recapitulation of mutant and corrected class II LDLR function and suggests that overexpression models may not accurately predict statin-mediated class II protein biology.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Hyperlipoproteinemia Type II/drug therapy , Hyperlipoproteinemia Type II/metabolism , Receptors, LDL/metabolism , Calnexin/metabolism , Endocytosis/drug effects , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress/drug effects , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Models, Biological , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, LDL/genetics , Rosuvastatin Calcium/pharmacology , Rosuvastatin Calcium/therapeutic use , Unfolded Protein Response/drug effects
4.
Curr Opin Organ Transplant ; 22(5): 490-498, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28873074

ABSTRACT

PURPOSE OF REVIEW: Controlling acute allograft rejection following vascularized composite allotransplantation requires strict adherence to courses of systemic immunosuppression. Discovering new methods to modulate the alloreactive immune response is essential for widespread application of vascularized composite allotransplantation. Here, we discuss how adipose-derived cellular therapies represent novel treatment options for immune modulation and tolerance induction in vascularized composite allotransplantation. RECENT FINDINGS: Adipose-derived mesenchymal stromal cells are cultured from autologous or allogeneic adipose tissue and possess immunomodulatory qualities capable of prolonging allograft survival in animal models of vascularized composite allotransplantation. Similar immunosuppressive and immunomodulatory effects have been observed with noncultured adipose stromal-vascular-fraction-derived therapies, albeit publication of in-vivo stromal vascular fraction cell modulation in transplantation models is lacking. However, both stromal vascular fraction and adipose derived mesenchymal stem cell therapies have the potential to effectively modulate acute allograft rejection via recruitment and induction of regulatory immune cells. SUMMARY: To date, most reports focus on adipose derived mesenchymal stem cells for immune modulation in transplantation despite their phenotypic plasticity and reliance upon culture expansion. Along with the capacity for immune modulation, the supplemental wound healing and vasculogenic properties of stromal vascular fraction, which are not shared by adipose derived mesenchymal stem cells, hint at the profound therapeutic impact stromal vascular fraction-derived treatments could have on controlling acute allograft rejection and tolerance induction in vascularized composite allotransplantation. Ongoing projects in the next few years will help design the best applications of these well tolerated and effective treatments that should reduce the risk/benefit ratio and allow more patients access to vascularized composite allotransplantation therapy.


Subject(s)
Adipose Tissue/transplantation , Graft Survival/immunology , Immunosuppression Therapy/methods , Vascularized Composite Allotransplantation/methods , Animals , Humans , Rats , Rats, Inbred Lew , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...