Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 62(7): e202215535, 2023 02 06.
Article in English | MEDLINE | ID: mdl-36398566

ABSTRACT

Bacterial adhesion, biofilm formation and host cell invasion of the ESKAPE pathogen Pseudomonas aeruginosa require the tetravalent lectins LecA and LecB, which are therefore drug targets to fight these infections. Recently, we have reported highly potent divalent galactosides as specific LecA inhibitors. However, they suffered from very low solubility and an intrinsic chemical instability due to two acylhydrazone motifs, which precluded further biological evaluation. Here, we isosterically substituted the acylhydrazones and systematically varied linker identity and length between the two galactosides necessary for LecA binding. The optimized divalent LecA ligands showed improved stability and were up to 1000-fold more soluble. Importantly, these properties now enabled their biological characterization. The lead compound L2 potently inhibited LecA binding to lung epithelial cells, restored wound closure in a scratch assay and reduced the invasiveness of P. aeruginosa into host cells.


Subject(s)
Adhesins, Bacterial , Pseudomonas aeruginosa , Humans , Adhesins, Bacterial/chemistry , Pseudomonas aeruginosa/metabolism , Virulence Factors/metabolism , Galactosides/chemistry , Galactosides/metabolism , Galactosides/pharmacology , Bacterial Adhesion
2.
Cell Rep ; 41(3): 111510, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36261008

ABSTRACT

Septin GTPases polymerize into higher-ordered structures as a part of the cytoskeleton and are involved in interactions of the host with a wide spectrum of pathogens. Many pathogens foster an ambiguous relationship with septins. They exploit septins for uptake, but septins also prevent their intracellular replication and target them for autophagy. We demonstrate that septins are involved in a defense mechanism against the pathogen Pseudomonas aeruginosa, which enters cells via a lipid zippering mechanism relying on interaction of the lectin LecA with the glycosphingolipid Gb3 on the host membrane. LecA-dependent invagination of the plasma membrane triggers septin recruitment to the site of bacterial attachment. We also find a septin-dependent reinforcement of cortical actin at attachment sites. Atomic force microscopy reveals formation of a septin-dependent rigid barrier below the membrane, preventing bacterial penetration. Our data suggest that septin barriers represent a cellular defense against bacteria inducing membrane curvature for invasion.


Subject(s)
Pseudomonas aeruginosa , Septins , Animals , Septins/metabolism , Pseudomonas aeruginosa/metabolism , Actins/metabolism , Glycosphingolipids/metabolism , Lectins/metabolism , Mammals/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...