Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Elife ; 112022 08 16.
Article in English | MEDLINE | ID: mdl-35972069

ABSTRACT

De novo mutations in voltage- and ligand-gated channels have been associated with an increasing number of cases of developmental and epileptic encephalopathies, which often fail to respond to classic antiseizure medications. Here, we examine two knock-in mouse models replicating de novo sequence variations in the human HCN1 voltage-gated channel gene, p.G391D and p.M153I (Hcn1G380D/+ and Hcn1M142I/+ in mouse), associated with severe drug-resistant neonatal- and childhood-onset epilepsy, respectively. Heterozygous mice from both lines displayed spontaneous generalized tonic-clonic seizures. Animals replicating the p.G391D variant had an overall more severe phenotype, with pronounced alterations in the levels and distribution of HCN1 protein, including disrupted targeting to the axon terminals of basket cell interneurons. In line with clinical reports from patients with pathogenic HCN1 sequence variations, administration of the antiepileptic Na+ channel antagonists lamotrigine and phenytoin resulted in the paradoxical induction of seizures in both mouse lines, consistent with an impairment in inhibitory neuron function. We also show that these variants can render HCN1 channels unresponsive to classic antagonists, indicating the need to screen mutated channels to identify novel compounds with diverse mechanism of action. Our results underscore the necessity of tailoring effective therapies for specific channel gene variants, and how strongly validated animal models may provide an invaluable tool toward reaching this objective.


Subject(s)
Brain Diseases , Ligand-Gated Ion Channels , Animals , Anticonvulsants , Brain Diseases/genetics , Child , Humans , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/genetics , Lamotrigine , Mice , Phenytoin , Potassium Channels/genetics , Seizures/drug therapy , Seizures/genetics
2.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Article in English | MEDLINE | ID: mdl-34429357

ABSTRACT

The development of the cerebral cortex relies on the controlled division of neural stem and progenitor cells. The requirement for precise spatiotemporal control of proliferation and cell fate places a high demand on the cell division machinery, and defective cell division can cause microcephaly and other brain malformations. Cell-extrinsic and -intrinsic factors govern the capacity of cortical progenitors to produce large numbers of neurons and glia within a short developmental time window. In particular, ion channels shape the intrinsic biophysical properties of precursor cells and neurons and control their membrane potential throughout the cell cycle. We found that hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channel subunits are expressed in mouse, rat, and human neural progenitors. Loss of HCN channel function in rat neural stem cells impaired their proliferation by affecting the cell-cycle progression, causing G1 accumulation and dysregulation of genes associated with human microcephaly. Transgene-mediated, dominant-negative loss of HCN channel function in the embryonic mouse telencephalon resulted in pronounced microcephaly. Together, our findings suggest a role for HCN channel subunits as a part of a general mechanism influencing cortical development in mammals.


Subject(s)
Cell Proliferation/physiology , Cerebral Cortex/embryology , Channelopathies/etiology , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/physiology , Microcephaly/etiology , Neural Stem Cells/physiology , Neurogenesis/physiology , Animals , Cell Cycle , Cell Death , Cells, Cultured , Cerebral Cortex/cytology , Channelopathies/embryology , Embryonic Stem Cells/metabolism , Embryonic Stem Cells/physiology , Humans , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/antagonists & inhibitors , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/genetics , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Mice , Mice, Transgenic , Microcephaly/embryology , Neural Stem Cells/metabolism , Rats
3.
Front Physiol ; 9: 773, 2018.
Article in English | MEDLINE | ID: mdl-30013483

ABSTRACT

Creatine serves as fast energy buffer in organs of high-energy demand such as brain and skeletal muscle. L-Arginine:glycine amidinotransferase (AGAT) and guanidinoacetate N-methyltransferase are responsible for endogenous creatine synthesis. Subsequent uptake into target organs like skeletal muscle, heart and brain is mediated by the creatine transporter (CT1, SLC6A8). Creatine deficiency syndromes are caused by defects of endogenous creatine synthesis or transport and are mainly characterized by intellectual disability, behavioral abnormalities, poorly developed muscle mass, and in some cases also muscle weakness. CT1-deficiency is estimated to be among the most common causes of X-linked intellectual disability and therefore the brain phenotype was the main focus of recent research. Unfortunately, very limited data concerning muscle creatine levels and functions are available from patients with CT1 deficiency. Furthermore, different CT1-deficient mouse models yielded conflicting results and detailed analyses of their muscular phenotype are lacking. Here, we report the generation of a novel CT1-deficient mouse model and characterized the effects of creatine depletion in skeletal muscle. HPLC-analysis showed strongly reduced total creatine levels in skeletal muscle and heart. MR-spectroscopy revealed an almost complete absence of phosphocreatine in skeletal muscle. Increased AGAT expression in skeletal muscle was not sufficient to compensate for insufficient creatine transport. CT1-deficient mice displayed profound impairment of skeletal muscle function and morphology (i.e., reduced strength, reduced endurance, and muscle atrophy). Furthermore, severely altered energy homeostasis was evident on magnetic resonance spectroscopy. Strongly reduced phosphocreatine resulted in decreased ATP/Pi levels despite an increased inorganic phosphate to ATP flux. Concerning glucose metabolism, we show increased glucose transporter type 4 expression in muscle and improved glucose clearance in CT1-deficient mice. These metabolic changes were associated with activation of AMP-activated protein kinase - a central regulator of energy homeostasis. In summary, creatine transporter deficiency resulted in a severe muscle weakness and atrophy despite different compensatory mechanisms.

4.
Amino Acids ; 48(8): 2025-39, 2016 08.
Article in English | MEDLINE | ID: mdl-26940723

ABSTRACT

Skeletal muscles require energy either at constant low (e.g., standing and posture) or immediate high rates (e.g., exercise). To fulfill these requirements, myocytes utilize the phosphocreatine (PCr)/creatine (Cr) system as a fast energy buffer and shuttle. We have generated mice lacking L-arginine:glycine amidino transferase (AGAT), the first enzyme of creatine biosynthesis. These AGAT(-/-) (d/d) mice are devoid of the PCr/Cr system and reveal severely altered oxidative phosphorylation. In addition, they exhibit complete resistance to diet-induced obesity, which is associated with a chronic activation of AMP-activated protein kinase in muscle and white adipose tissue. The underlying metabolic rearrangements have not yet been further analyzed. Here, we performed gene expression analysis in skeletal muscle and a serum amino acid profile of d/d mice revealing transcriptomic and metabolic alterations in pyruvate and glucose pathways. Differential pyruvate tolerance tests demonstrated preferential conversion of pyruvate to alanine, which was supported by increased protein levels of enzymes involved in pyruvate and alanine metabolism. Pyruvate tolerance tests suggested severely impaired hepatic gluconeogenesis despite increased availability of pyruvate and alanine. Furthermore, enzymes of serine production and one-carbon metabolism were significantly up-regulated in d/d mice, indicating increased de novo formation of one-carbon units from carbohydrate metabolism linked to NAD(P)H production. Besides the well-established function of the PCr/Cr system in energy metabolism, our transcriptomic and metabolic analyses suggest that it plays a pivotal role in systemic one-carbon metabolism, oxidation/reduction, and biosynthetic processes. Therefore, the PCr/Cr system is not only an energy buffer and shuttle, but also a crucial component involved in numerous systemic metabolic processes.


Subject(s)
Amidinotransferases/deficiency , Amino Acid Metabolism, Inborn Errors/metabolism , Intellectual Disability/metabolism , Metabolome , Obesity/metabolism , Oxidative Phosphorylation , Phosphocreatine/metabolism , Speech Disorders/metabolism , Transcriptome , Adipose Tissue, White/metabolism , Adipose Tissue, White/pathology , Amidinotransferases/genetics , Amidinotransferases/metabolism , Amino Acid Metabolism, Inborn Errors/genetics , Amino Acid Metabolism, Inborn Errors/pathology , Animals , Developmental Disabilities/genetics , Developmental Disabilities/metabolism , Developmental Disabilities/pathology , Intellectual Disability/genetics , Intellectual Disability/pathology , Mice , Mice, Knockout , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Obesity/chemically induced , Obesity/genetics , Obesity/pathology , Phosphocreatine/genetics , Speech Disorders/genetics , Speech Disorders/pathology
5.
Amino Acids ; 47(9): 1921-9, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26077714

ABSTRACT

L-Homoarginine (hArg) is an endogenous amino acid which has emerged as a novel biomarker for stroke and cardiovascular disease. Low circulating hArg levels are associated with increased mortality and vascular events, whereas recent data have revealed positive correlations between circulating hArg and metabolic vascular risk factors like obesity or blood glucose levels. However, it is unclear whether hArg levels are causally linked to metabolic parameters. Therefore, the aim of our study was to investigate whether hArg directly influences body weight, blood glucose, glucose tolerance or insulin sensitivity. Here, we show that hArg supplementation (14 and 28 mg/mL orally per drinking water) ameliorates blood glucose levels in mice on high-fat diet (HFD) by a reduction of 7.3 ± 3.7 or 13.4 ± 3.8 %, respectively. Fasting insulin concentrations were slightly, yet significantly affected (63.8 ± 11.3 or 162.1 ± 39.5 % of control animals, respectively), whereas body weight and glucose tolerance were unaltered. The substantial augmentation of hArg plasma concentrations in supplemented animals (327.5 ± 40.4 or 627.5 ± 60.3 % of control animals, respectively) diminished profoundly after the animals became obese (129.9 ± 16.6 % in control animals after HFD vs. 140.1 ± 8.5 or 206.3 ± 13.6 %, respectively). This hArg-lowering effect may contribute to the discrepancy between the inverse correlation of plasma hArg levels with stroke and cardiovascular outcome, on the one hand, and the direct correlation with cardiovascular risk factors like obesity and blood glucose, on the other hand, that has been observed in human studies. Our results suggest that the glucose-lowering effects of hArg may reflect a compensatory mechanism of blood glucose reduction by hArg upregulation in obese individuals, without directly influencing body weight or glucose tolerance.


Subject(s)
Blood Glucose/metabolism , Dietary Fats/adverse effects , Homoarginine/pharmacology , Obesity/blood , Obesity/chemically induced , Obesity/drug therapy , Animals , Dietary Fats/pharmacology , Homoarginine/pharmacokinetics , Humans , Male , Mice
6.
Circulation ; 128(13): 1451-61, 2013 Sep 24.
Article in English | MEDLINE | ID: mdl-24004504

ABSTRACT

BACKGROUND: Endogenous arginine homologues, including homoarginine, have been identified as novel biomarkers for cardiovascular disease and outcomes. Our studies of human cohorts and a confirmatory murine model associated the arginine homologue homoarginine and its metabolism with stroke pathology and outcome. METHODS AND RESULTS: Increasing homoarginine levels were independently associated with a reduction in all-cause mortality in patients with ischemic stroke (7.4 years of follow-up; hazard ratio for 1-SD homoarginine, 0.79 [95% confidence interval, 0.64-0.96]; P=0.019; n=389). Homoarginine was also independently associated with the National Institutes of Health Stroke Scale+age score and 30-day mortality after ischemic stroke (P<0.05; n=137). A genome-wide association study revealed that plasma homoarginine was strongly associated with single nucleotide polymorphisms in the L-arginine:glycine amidinotransferase (AGAT) gene (P<2.1 × 10(-8); n=2806), and increased AGAT expression in a cell model was associated with increased homoarginine. Next, we used 2 genetic murine models to investigate the link between plasma homoarginine and outcome after experimental ischemic stroke: (1) an AGAT deletion (AGAT(-/-)) and (2) a guanidinoacetate N-methyltransferase deletion (GAMT(-/-)) causing AGAT upregulation. As suggested by the genome-wide association study, homoarginine was absent in AGAT(-/-) mice and increased in GAMT(-/-) mice. Cerebral damage and neurological deficits in experimental stroke were increased in AGAT(-/-) mice and attenuated by homoarginine supplementation, whereas infarct size in GAMT(-/-) mice was decreased compared with controls. CONCLUSIONS: Low homoarginine appears to be related to poor outcome after ischemic stroke. Further validation in future trials may lead to therapeutic adjustments of homoarginine metabolism that alleviate stroke and other vascular disorders.


Subject(s)
Amidinotransferases/genetics , Arginine/genetics , Homoarginine/genetics , Stroke/genetics , Adult , Aged , Animals , Cohort Studies , Disease Models, Animal , Female , Genome-Wide Association Study , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Middle Aged , Polymorphism, Single Nucleotide/genetics , Prospective Studies , Stroke/diagnosis , Treatment Outcome
7.
FASEB J ; 27(10): 4147-56, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23825223

ABSTRACT

AMP-activated protein kinase (AMPK) is a key sensor and regulator of energy homeostasis. Previously, we demonstrated that intracellular energy depletion by L-arginine:glycine amidinotransferase (AGAT) deficiency resulted in AMPK activation and protected from metabolic syndrome. In the present study, we show tissue-specific leptin dependence of AMPK activation by energy depletion. We investigated leptin-dependent AMPK regulation in AGAT- and leptin-deficient (d/d ob/ob) mice. Like ob/ob mice, but unlike d/d mice, d/d ob/ob mice were obese and glucose intolerant. Therefore, leptin is a prerequisite for resistance to metabolic syndrome in AGAT-deficient mice. Quantitative Western blots revealed a 4-fold increase in AMPK activation in skeletal muscle of d/d ob/ob mice (P<0.001). However, AMPK activation was absent in white adipose tissue (WAT) and liver. Compared with blood glucose levels in ob/ob mice, fasting levels were still reduced and therefore did not show leptin dependence (wild-type, 79.4±3.9 mg/dl; d/d, 68.4±3.2 mg/dl; P<0.05). In ob/ob mice and wild-type mice, 5-aminoimidazole-4-carboxamide-1-ß-D-ribofuranoside (AICAR), in combination with leptin, augmented glucose tolerance compared with AICAR alone, whereas no improvement was found under conditions of high-fat-diet feeding. These findings reveal a previously unknown synergistic AMPK activation by leptin and intracellular energy depletion, suggesting that AMPK activation can be therapeutically effective in metabolic syndrome only if leptin sensitivity is preserved.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Creatine/metabolism , Enzyme Activation/physiology , Leptin/metabolism , AMP-Activated Protein Kinases/genetics , Adipose Tissue, White/enzymology , Aminoimidazole Carboxamide/analogs & derivatives , Animals , Blood Glucose , Creatine/genetics , Dietary Fats , Enzyme Activation/genetics , Leptin/genetics , Liver/enzymology , Mice , Mice, Knockout , Muscle, Skeletal/enzymology , Obesity , Ribonucleotides
8.
Hum Mol Genet ; 22(1): 110-23, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-23026748

ABSTRACT

Phosphorylated creatine (Cr) serves as an energy buffer for ATP replenishment in organs with highly fluctuating energy demand. The central role of Cr in the brain and muscle is emphasized by severe neurometabolic disorders caused by Cr deficiency. Common symptoms of inborn errors of creatine synthesis or distribution include mental retardation and muscular weakness. Human mutations in l-arginine:glycine amidinotransferase (AGAT), the first enzyme of Cr synthesis, lead to severely reduced Cr and guanidinoacetate (GuA) levels. Here, we report the generation and metabolic characterization of AGAT-deficient mice that are devoid of Cr and its precursor GuA. AGAT-deficient mice exhibited decreased fat deposition, attenuated gluconeogenesis, reduced cholesterol levels and enhanced glucose tolerance. Furthermore, Cr deficiency completely protected from the development of metabolic syndrome caused by diet-induced obesity. Biochemical analyses revealed the chronic Cr-dependent activation of AMP-activated protein kinase (AMPK), which stimulates catabolic pathways in metabolically relevant tissues such as the brain, skeletal muscle, adipose tissue and liver, suggesting a mechanism underlying the metabolic phenotype. In summary, our results show marked metabolic effects of Cr deficiency via the chronic activation of AMPK in a first animal model of AGAT deficiency. In addition to insights into metabolic changes in Cr deficiency syndromes, our genetic model reveals a novel mechanism as a potential treatment option for obesity and type 2 diabetes mellitus.


Subject(s)
Amidinotransferases/genetics , Metabolic Syndrome/genetics , Adenylate Kinase/metabolism , Adipose Tissue , Animals , Body Weight , Brain/metabolism , Creatine/metabolism , Enzyme Activation , Hypothalamus/enzymology , Magnetic Resonance Spectroscopy , Metabolic Syndrome/enzymology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mutation
9.
Biol Chem ; 387(5): 583-93, 2006 May.
Article in English | MEDLINE | ID: mdl-16740130

ABSTRACT

The three isoforms of human Ins(1,4,5)P3 3-kinase (IP3K) show remarkable differences in their intracellular targeting. Whereas predominant targeting to the cytoskeleton and endoplasmic reticulum has been shown for IP3K-A and IP3K-B, rat IP3K-C shuttles actively between the nucleus and cytoplasm. In the present study we examined the expression and intracellular localisation of endogenous IP3K-C in different mammalian cell lines using an isoform-specific antibody. In addition, human IP3K-C, showing remarkable differences to its rat homologue in the N-terminal targeting domain, was tagged with EGFP and used to examine active transport mechanisms into and out of the nucleus. We found both a nuclear import activity residing in its N-terminal domain and a nuclear export activity sensitive to treatment with leptomycin B. Different from the rat isoform, an exportin 1-dependent nuclear export site of the human enzyme resides outside the N-terminal targeting domain in the catalytic enzyme domain. A phylogenetic survey of vertebrate IP3K sequences indicates that in each of the three isoforms a nuclear export signal has evolved in the catalytic domain either de novo (IP3K-A) or as a substitute for an earlier evolved corresponding N-terminal signal (IP3K-B and IP3K-C). In higher vertebrates, and in particular in primates, re-export of nuclear IP3K activity may be guaranteed by the mechanism discovered.


Subject(s)
Cell Nucleus/metabolism , Cytoplasm/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Active Transport, Cell Nucleus , Amino Acid Sequence , Animals , Blotting, Western/methods , COS Cells , Catalytic Domain/genetics , Catalytic Domain/physiology , Cell Line, Tumor , Chlorocebus aethiops , Cloning, Molecular , Endoplasmic Reticulum/metabolism , Fluorescent Antibody Technique , Green Fluorescent Proteins/chemistry , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Inositol 1,4,5-Trisphosphate/metabolism , Inositol Phosphates/metabolism , Isoenzymes/genetics , Isoenzymes/metabolism , Microscopy, Fluorescence/methods , Molecular Sequence Data , Phosphotransferases (Alcohol Group Acceptor)/genetics , Rats , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Sequence Homology, Amino Acid
10.
J Biol Chem ; 278(22): 19765-76, 2003 May 30.
Article in English | MEDLINE | ID: mdl-12649294

ABSTRACT

The calcium-liberating second messenger inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) is converted to inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4) by Ins(1,4,5)P3 3-kinases (IP3Ks) that add a fourth phosphate group to the 3-position of the inositol ring. Two isoforms of IP3Ks (named A and B) from different vertebrate species have been well studied. Recently the cloning and examination of a human full-length cDNA encoding a novel isoform, termed human IP3K-C (HsIP3K-C), has been reported. In the present study we report the cloning of a full-length cDNA encoding a rat homologue of HsIP3K-C with a unique mRNA expression pattern, which differs remarkably from the tissue distribution of HsIP3K-C. Of the rat tissues examined, rat IP3K-C (RnIP3K-C) is mainly present in heart, brain, and testis and shows the strongest expression in an epidermal tissue, namely tongue epithelium. RnIP3K-C has a calculated molecular mass of approximately 74.5 kDa and shows an overall identity of approximately 75% with HsIP3K-C. A bacterially expressed, enzymatically active and Ca2+-calmodulin-regulated fragment of this isoform displays remarkable enzymatic properties like a very low Km for Ins(1,4,5)P3 ( approximately 0.2 microm), substrate inhibition by high concentrations of Ins(1,4,5)P3, allosteric product activation by Ins(1,3,4,5)P4 in absence of Ca2+-calmodulin (Ka(app) 0.52 microm), and the ability to efficiently phosphorylate a second InsP3 substrate, inositol 2,4,5-trisphosphate, to inositol 2,4,5,6-tetrakisphosphate in the presence of Ins(1,3,4,5)P4. Furthermore, the RnIP3K-C fused with a fluorescent protein tag is actively transported into and out of the nucleus when transiently expressed in mammalian cells. A leucine-rich nuclear export signal and an uncharacterized nuclear import activity are localized in the N-terminal domain of the protein and determine its nucleocytoplasmic shuttling. These findings point to a particular role of RnIP3K-C in nuclear inositol trisphosphate phosphorylation and cellular growth.


Subject(s)
Cell Nucleus/metabolism , Cytoplasm/metabolism , Inositol 1,4,5-Trisphosphate/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Animals , Base Sequence , Cloning, Molecular , DNA Primers , Phosphorylation , Phosphotransferases (Alcohol Group Acceptor)/genetics , Protein Transport , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...