Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters











Publication year range
1.
Anat Rec (Hoboken) ; 307(4): 1147-1174, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37794742

ABSTRACT

The anatomy of the braincase and associated soft tissues of the lagerpetid Dromomeron gregorii (Archosauria: Avemetatarsalia) from the Late Triassic of the United States is here described. This corresponds to the first detailed description of cranial materials of Lagerpetidae, an enigmatic group of Late Triassic (c. 236-200 Million years ago) animals that are the closest known relatives of pterosaurs, the flying reptiles. The braincase of D. gregorii is characterized by the presence of an anteriorly elongated laterosphenoid and a postparietal, features observed in stem-archosaurs but that were still unknown in early members of the avian lineage of archosaurs. Using micro-computed tomography (CT-scan data), we present digital reconstructions of the brain and endosseous labyrinth of D. gregorii. The brain of D. gregorii exhibits a floccular lobe of the cerebellum that projects within the space of the semicircular canals. The semicircular canals are relatively large when compared to other archosauromorphs, with the anterior canal exhibiting a circular shape. These features of the sensory structures of D. gregorii are more similar to those of pterosaurs than to those of other early avemetatarsalians. In sum, the braincase anatomy of D. gregorii shows a combination of plesiomorphic and apomorphic features in the phylogenetic context of Archosauria and suggests that the still poorly understood early evolution of the braincase in avemetatarsalians is complex, with a scenario of independent acquisitions and losses of character states.


Subject(s)
Dinosaurs , Fossils , Animals , Phylogeny , Neuroanatomy , X-Ray Microtomography , Skull/anatomy & histology , Semicircular Canals , Biological Evolution , Dinosaurs/anatomy & histology
2.
Nature ; 620(7974): 589-594, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37587301

ABSTRACT

Dinosaurs and pterosaurs have remarkable diversity and disparity through most of the Mesozoic Era1-3. Soon after their origins, these reptiles diversified into a number of long-lived lineages, evolved unprecedented ecologies (for example, flying, large herbivorous forms) and spread across Pangaea4,5. Recent discoveries of dinosaur and pterosaur precursors6-10 demonstrated that these animals were also speciose and widespread, but those precursors have few if any well-preserved skulls, hands and associated skeletons11,12. Here we present a well-preserved partial skeleton (Upper Triassic, Brazil) of the new lagerpetid Venetoraptor gassenae gen. et sp. nov. that offers a more comprehensive look into the skull and ecology of one of these precursors. Its skull has a sharp, raptorial-like beak, preceding that of dinosaurs by around 80 million years, and a large hand with long, trenchant claws that firmly establishes the loss of obligatory quadrupedalism in these precursor lineages. Combining anatomical information of the new species with other dinosaur and pterosaur precursors shows that morphological disparity of precursors resembles that of Triassic pterosaurs and exceeds that of Triassic dinosaurs. Thus, the 'success' of pterosaurs and dinosaurs was a result of differential survival among a broader pool of ecomorphological variation. Our results show that the morphological diversity of ornithodirans started to flourish among early-diverging lineages and not only after the origins of dinosaurs and pterosaurs.


Subject(s)
Dinosaurs , Phylogeny , Reptiles , Animals , Beak/anatomy & histology , Dinosaurs/anatomy & histology , Dinosaurs/classification , Reptiles/anatomy & histology , Reptiles/classification , Skull/anatomy & histology , Fossils , Skeleton
3.
Front Psychiatry ; 14: 1149079, 2023.
Article in English | MEDLINE | ID: mdl-37252134

ABSTRACT

Introduction: Parental monitoring is a key intervention target for adolescent substance use, however this practice is largely supported by causally uninformative cross-sectional or sparse-longitudinal observational research designs. Methods: We therefore evaluated relationships between adolescent substance use (assessed weekly) and parental monitoring (assessed every two months) in 670 adolescent twins for two years. This allowed us to assess how individual-level parental monitoring and substance use trajectories were related and, via the twin design, to quantify genetic and environmental contributions to these relationships. Furthermore, we attempted to devise additional measures of parental monitoring by collecting quasi-continuous GPS locations and calculating a) time spent at home between midnight and 5am and b) time spent at school between 8am-3pm. Results: ACE-decomposed latent growth models found alcohol and cannabis use increased with age while parental monitoring, time at home, and time at school decreased. Baseline alcohol and cannabis use were correlated (r = .65) and associated with baseline parental monitoring (r = -.24 to -.29) but not with baseline GPS measures (r = -.06 to -.16). Longitudinally, changes in substance use and parental monitoring were not significantly correlated. Geospatial measures were largely unrelated to parental monitoring, though changes in cannabis use and time at home were highly correlated (r = -.53 to -.90), with genetic correlations suggesting their relationship was substantially genetically mediated. Due to power constraints, ACE estimates and biometric correlations were imprecisely estimated. Most of the substance use and parental monitoring phenotypes were substantially heritable, but genetic correlations between them were not significantly different from 0. Discussion: Overall, we found developmental changes in each phenotype, baseline correlations between substance use and parental monitoring, co-occurring changes and mutual genetic influences for time at home and cannabis use, and substantial genetic influences on many substance use and parental monitoring phenotypes. However, our geospatial variables were mostly unrelated to parental monitoring, suggesting they poorly measured this construct. Furthermore, though we did not detect evidence of genetic confounding, changes in parental monitoring and substance use were not significantly correlated, suggesting that, at least in community samples of mid-to-late adolescents, the two may not be causally related.

4.
Alzheimers Dement (N Y) ; 9(2): e12390, 2023.
Article in English | MEDLINE | ID: mdl-37228576

ABSTRACT

Introduction: Hispanics/Latinos (H/Ls) are significantly underrepresented in Alzheimer's disease (AD) research participant samples. This exclusion limits our interpretation of research findings and understanding of the causes of brain health disparities. The Engaging Communities of Hispanics/Latinos for Aging Research (ECHAR) Network was created to engage, educate, and motivate H/Ls for participation in brain aging research by addressing several barriers to inclusion, including health literacy and AD-related communication. Methods: We used a novel community-engaged method-Boot Camp Translation (BCT)-to translate medical jargon into action-based, community-relevant messages. H/L community members (n = 39) were recruited from three cities to work with local research teams and co-develop culturally responsive AD-related messaging. BCT meetings leveraged various techniques to identify key messages, the target audience for the messages, and methods to disseminate these messages. Themes were constructed collaboratively between BCT facilitators and community members as the group iteratively refined the conceptual framework and language for the main messages, with the goal to make AD messaging accessible for H/L community members. Results: H/L community members showed significant improvements in subjective understanding (Cohen's d = 0.75; P < 0.001) and objective knowledge of Alzheimer's disease (Cohen's d = 0.79; P < 0.001) at BCT completion. H/L community members identified key messages that converged for all three cities. These were related to reducing stigma, emphasizing brain health and risk mitigation, and acknowledging the impact of AD on multi-generational families/households. Participants also recommended sharing these messages with H/Ls across the lifespan using multi-media avenues. Discussion: The collaborative efforts identified culturally responsive and community-relevant messaging that may help address health literacy barriers contributing to AD-related disparities in H/L communities. HIGHLIGHTS: Hispanics/Latinos are underrepresented in Alzheimer's disease and related dementias (ADRD) research despite increased risk.Limited ADRD health literacy may act as a recruitment barrier.Boot Camp Translation (BCT) is a process that targets health communication.We carried out BCT in three cities to co-develop ADRD messaging.Results highlight regional similarities and differences in ADRD communication.

5.
Anat Rec (Hoboken) ; 306(8): 2102-2118, 2023 08.
Article in English | MEDLINE | ID: mdl-36847780

ABSTRACT

The femora of diapsids have undergone morphological changes related to shifts in postural and locomotor modes, such as the transition from plesiomorphic amniote and diapsid taxa to the apomorphic conditions related to a more erect posture within Archosauriformes. One remarkable clade of Triassic diapsids is the chameleon-like Drepanosauromorpha. This group is known from numerous articulated but heavily compressed skeletons that have the potential to further inform early reptile femoral evolution. For the first time, we describe the three-dimensional osteology of the femora of Drepanosauromorpha, based on undistorted fossils from the Upper Triassic Chinle Formation and Dockum Group of North America. We identify apomorphies and a combination of character states that link these femora to those in crushed specimens of drepanosauromorphs and compare our sample with a range of amniote taxa. Several characteristics of drepanosauromorph femora, including a hemispherical proximal articular surface, prominent asymmetry in the proximodistal length of the tibial condyles, and a deep intercondylar sulcus, are plesiomorphies shared with early diapsids. The femora contrast with those of most diapsids in lacking a crest-like, distally tapering internal trochanter. They bear a ventrolaterally positioned tuberosity on the femoral shaft, resembling the fourth trochanter in Archosauriformes. The reduction of an internal trochanter parallels independent reductions in therapsids and archosauriforms. The presence of a ventrolaterally positioned trochanter is also similar to that of chameleonid squamates. Collectively, these features demonstrate a unique femoral morphology for drepanosauromorphs, and suggest an increased capacity for femoral adduction and protraction relative to most other Permo-Triassic diapsids.


Subject(s)
Reptiles , Thigh , Animals , Phylogeny , Thigh/anatomy & histology , Reptiles/anatomy & histology , Fossils , Femur/anatomy & histology , Biological Evolution
6.
Nature ; 614(7946): 102-107, 2023 02.
Article in English | MEDLINE | ID: mdl-36697827

ABSTRACT

Living amphibians (Lissamphibia) include frogs and salamanders (Batrachia) and the limbless worm-like caecilians (Gymnophiona). The estimated Palaeozoic era gymnophionan-batrachian molecular divergence1 suggests a major gap in the record of crown lissamphibians prior to their earliest fossil occurrences in the Triassic period2-6. Recent studies find a monophyletic Batrachia within dissorophoid temnospondyls7-10, but the absence of pre-Jurassic period caecilian fossils11,12 has made their relationships to batrachians and affinities to Palaeozoic tetrapods controversial1,8,13,14. Here we report the geologically oldest stem caecilian-a crown lissamphibian from the Late Triassic epoch of Arizona, USA-extending the caecilian record by around 35 million years. These fossils illuminate the tempo and mode of early caecilian morphological and functional evolution, demonstrating a delayed acquisition of musculoskeletal features associated with fossoriality in living caecilians, including the dual jaw closure mechanism15,16, reduced orbits17 and the tentacular organ18. The provenance of these fossils suggests a Pangaean equatorial origin for caecilians, implying that living caecilian biogeography reflects conserved aspects of caecilian function and physiology19, in combination with vicariance patterns driven by plate tectonics20. These fossils reveal a combination of features that is unique to caecilians alongside features that are shared with batrachian and dissorophoid temnospondyls, providing new and compelling evidence supporting a single origin of living amphibians within dissorophoid temnospondyls.


Subject(s)
Amphibians , Anura , Fossils , Phylogeny , Urodela , Animals , Amphibians/anatomy & histology , Anura/anatomy & histology , Arizona , Urodela/anatomy & histology , Orbit/anatomy & histology , Jaw/anatomy & histology , Musculoskeletal System/anatomy & histology
7.
J Morphol ; 283(10): 1359-1375, 2022 10.
Article in English | MEDLINE | ID: mdl-35998301

ABSTRACT

A snake-like body plan and burrowing lifestyle characterize numerous vertebrate groups as a result of convergent evolution. One such group is the amphisbaenians, a clade of limbless, fossorial lizards that exhibit head-first burrowing behavior. Correlated with this behavior, amphisbaenian skulls are more rigid and coossified than those of nonburrowing lizards. However, due to their lifestyle, there are many gaps in our understanding of amphisbaenian anatomy, including how their cranial osteology varies among individuals of the same species and what that reveals about constraints on the skull morphology of head-first burrowing taxa. We investigated intraspecific variation in the cranial osteology of amphisbaenians using seven individuals of the trogonophid Diplometopon zarudnyi. Variation in both skull and individual skull element morphology was examined qualitatively and quantitatively through three-dimensional (3D) models created from microcomputed tomography data. Qualitative examination revealed differences in the number and position of foramina, the interdigitation between the frontals and parietal, and the extent of coossification among the occipital complex, fused basioccipital and parabasisphenoid ("parabasisphenoid-basioccipital complex"), and elements X. We performed 3D landmark-based geometric morphometrics for the quantitative assessment, revealing shape differences in the skull, premaxilla, maxilla, frontal, and parietal. The observed intraspecific variation may be the result of different stages of ontogenetic development or biomechanical optimization for head-first burrowing. For example, variation in the coossification of the occipital region suggests a potential ontogenetic coossification sequence. Examination of these areas of variation across other head-first burrowing taxa will help determine if the variation is clade-specific or part of a broader macroevolutionary pattern of head-first burrowing.


Subject(s)
Lizards , Osteology , Animals , Lizards/anatomy & histology , Maxilla/anatomy & histology , Skull/anatomy & histology , Skull/diagnostic imaging , X-Ray Microtomography
8.
Anat Rec (Hoboken) ; 305(10): 2353-2414, 2022 10.
Article in English | MEDLINE | ID: mdl-34585850

ABSTRACT

Once known solely from dental material and thought to represent an early ornithischian dinosaur, the early-diverging pseudosuchian Revueltosaurus callenderi is described from a minimum of 12 skeletons from a monodominant bonebed in the upper part of the Chinle Formation of Arizona. This material includes nearly the entire skeleton and possesses a combination of plesiomorphic and derived character states that help clarify ingroup relationships within Pseudosuchia. A phylogenetic analysis recovers R. callenderi in a clade with Aetosauria and Acaenasuchus geoffreyi that is named Aetosauriformes. Key autapomorphies of R. callenderi include a skull that is longer than the femur, a complete carapace of dermal armor including paramedian and lateral rows, as well as ventral osteoderms, and a tail end sheathed in bone. Histology of the femur and associated osteoderms demonstrate that R. callenderi was slow growing and that the individuals from the bonebed were not young juveniles but had not ceased growing. A review of other material assigned to Revueltosaurus concludes that the genus cannot be adequately diagnosed based on the type materials of the three assigned species and that only R. callenderi can be confidently referred to Revueltosaurus.


Subject(s)
Dinosaurs , Osteology , Animals , Arizona , Biological Evolution , Dinosaurs/anatomy & histology , Forests , Fossils , Parks, Recreational , Phylogeny , Skull/anatomy & histology
9.
Integr Org Biol ; 3(1): obab013, 2021.
Article in English | MEDLINE | ID: mdl-34377940

ABSTRACT

Pygopodids are elongate, functionally limbless geckos found throughout Australia. The clade presents low taxonomic diversity (∼45 spp.), but a variety of cranial morphologies, habitat use, and locomotor abilities that vary between and within genera. In order to assess potential relationships between cranial morphology and ecology, computed tomography scans of 29 species were used for 3D geometric morphometric analysis. A combination of 24 static landmarks and 20 sliding semi-landmarks were subjected to Generalized Procrustes Alignment. Disparity in cranial shape was visualized through Principal Component Analysis, and a multivariate analysis of variance (MANOVA) was used to test for an association between shape, habitat, and diet. A subset of 27 species with well-resolved phylogenetic relationships was used to generate a phylomorphospace and conduct phylogeny-corrected MANOVA. Similar analyses were done solely on Aprasia taxa to explore species-level variation. Most of the variation across pygopodids was described by principal component (PC) 1(54%: cranial roof width, parabasisphenoid, and occipital length), PC2 (12%: snout elongation and braincase width), and PC3 (6%: elongation and shape of the palate and rostrum). Without phylogenetic correction, both habitat and diet were significant influencers of variation in cranial morphology. However, in the phylogeny-corrected MANOVA, habitat remained weakly significant, but not diet, which can be explained by generic-level differences in ecology rather than among species. Our results demonstrate that at higher levels, phylogeny has a strong effect on morphology, but that influence may be due to small sample size when comparing genera. However, because some closely related taxa occupy distant regions of morphospace, diverging diets, and use of fossorial habitats may contribute to variation seen in these geckos.

10.
Naturwissenschaften ; 108(4): 32, 2021 Jul 02.
Article in English | MEDLINE | ID: mdl-34213630

ABSTRACT

The Placerias/Downs' Quarry complex in eastern Arizona, USA, is the most diverse Upper Triassic vertebrate locality known. We report a new short-faced archosauriform, Syntomiprosopus sucherorum gen. et sp. nov., represented by four incomplete mandibles, that expands that diversity with a morphology unique among Late Triassic archosauriforms. The most distinctive feature of Syntomiprosopus gen. nov. is its anteroposteriorly short, robust mandible with 3-4 anterior, a larger caniniform, and 1-3 "postcanine" alveoli. The size and shape of the alveoli and the preserved tips of replacement teeth preclude assignment to any taxon known only from teeth. Additional autapomorphies of S. sucherorum gen. et sp. nov. include a large fossa associated with the mandibular fenestra, an interdigitating suture of the surangular with the dentary, fine texture ornamenting the medial surface of the splenial, and a surangular ridge that completes a 90° arc. The external surfaces of the mandibles bear shallow, densely packed, irregular, fine pits and narrow, arcuate grooves. This combination of character states allows an archosauriform assignment; however, an associated and similarly sized braincase indicates that Syntomiprosopus n. gen. may represent previously unsampled disparity in early-diverging crocodylomorphs. The Placerias Quarry is Adamanian (Norian, maximum depositional age ~219 Ma), and this specimen appears to be an early example of shortening of the skull, which occurs later in diverse archosaur lineages, including the Late Cretaceous crocodyliform Simosuchus. This is another case where Triassic archosauriforms occupied morphospace converged upon by other archosaurs later in the Mesozoic and further demonstrates that even well-sampled localities can yield new taxa.


Subject(s)
Dinosaurs , Fossils , Animals , Arizona , Dinosaurs/anatomy & histology , Hair , Skull/anatomy & histology
11.
Curr Biol ; 31(12): 2520-2529.e6, 2021 06 21.
Article in English | MEDLINE | ID: mdl-33930303

ABSTRACT

Living archosaurs (birds and crocodylians) have disparate locomotor strategies that evolved since their divergence ∼250 mya. Little is known about the early evolution of the sensory structures that are coupled with these changes, mostly due to limited sampling of early fossils on key stem lineages. In particular, the morphology of the semicircular canals (SCCs) of the endosseous labyrinth has a long-hypothesized relationship with locomotion. Here, we analyze SCC shapes and sizes of living and extinct archosaurs encompassing diverse locomotor habits, including bipedal, semi-aquatic, and flying taxa. We test form-function hypotheses of the SCCs and chronicle their evolution during deep archosaurian divergences. We find that SCC shape is statistically associated with both flight and bipedalism. However, this shape variation is small and is more likely explained by changes in braincase geometry than by locomotor changes. We demonstrate high disparity of both shape and size among stem-archosaurs and a deep divergence of SCC morphologies at the bird-crocodylian split. Stem-crocodylians exhibit diverse morphologies, including aspects also present in birds and distinct from other reptiles. Therefore, extant crocodylian SCC morphologies do not reflect retention of a "primitive" reptilian condition. Key aspects of bird SCC morphology that hitherto were interpreted as flight related, including large SCC size and enhanced sensitivity, appeared early on the bird stem-lineage in non-flying dinosaur precursors. Taken together, our results indicate a deep divergence of SCC traits at the bird-crocodylian split and that living archosaurs evolved from an early radiation with high sensory diversity. VIDEO ABSTRACT.


Subject(s)
Biological Evolution , Birds/anatomy & histology , Dinosaurs/anatomy & histology , Extinction, Biological , Semicircular Canals/anatomy & histology , Animals , Fossils , Phylogeny , Reptiles/anatomy & histology
12.
Alzheimers Dement (N Y) ; 7(1): e12158, 2021.
Article in English | MEDLINE | ID: mdl-33778150

ABSTRACT

INTRODUCTION: Inflammatory markers have long been observed in the brain, cerebrospinal fluid (CSF), and plasma of Alzheimer's disease (AD) patients, suggesting that inflammation contributes to AD and might be a therapeutic target. However, non-steroidal anti-inflammatory drug trials in AD and mild cognitive impairment (MCI) failed to show benefit. Our previous work seeking to understand why people with the inflammatory disease rheumatoid arthritis are protected from AD found that short-term treatment of transgenic AD mice with the pro-inflammatory cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) led to an increase in activated microglia, a 50% reduction in amyloid load, an increase in synaptic area, and improvement in spatial memory to normal. These results called into question the consensus view that inflammation is solely detrimental in AD. Here, we tested our hypothesis that modulation of the innate immune system might similarly be used to treat AD in humans by investigating the ability of GM-CSF/sargramostim to safely ameliorate AD symptoms/pathology. METHODS: A randomized, double-blind, placebo-controlled trial was conducted in mild-to-moderate AD participants (NCT01409915). Treatments (20 participants/group) occurred 5 days/week for 3 weeks plus two follow-up (FU) visits (FU1 at 45 days and FU2 at 90 days) with neurological, neuropsychological, blood biomarker, and imaging assessments. RESULTS: Sargramostim treatment expectedly changed innate immune system markers, with no drug-related serious adverse events or amyloid-related imaging abnormalities. At end of treatment (EOT), the Mini-Mental State Examination score of the sargramostim group increased compared to baseline (P = .0074) and compared to placebo (P = .0370); the treatment effect persisted at FU1 (P = .0272). Plasma markers of amyloid beta (Aß40 [decreased in AD]) increased 10% (P = .0105); plasma markers of neurodegeneration (total tau and UCH-L1) decreased 24% (P = .0174) and 42% (P = .0019), respectively, after sargramostim treatment compared to placebo. DISCUSSION: The innate immune system is a viable target for therapeutic intervention in AD. An extended treatment trial testing the long-term safety and efficacy of GM-CSF/sargramostim in AD is warranted.

13.
J Anat ; 239(1): 184-206, 2021 07.
Article in English | MEDLINE | ID: mdl-33660262

ABSTRACT

The radiation of archosauromorph reptiles in the Triassic Period produced an unprecedented collection of diverse and disparate forms with a mix of varied ecologies and body sizes. Some of these forms were completely unique to the Triassic, whereas others were converged on by later members of Archosauromorpha. One of the most striking examples of this is with Triopticus primus, the early dome-headed form later mimicked by pachycephalosaurid dinosaurs. Here we fully describe the cranial anatomy of Triopticus primus, but also recognize a second dome-headed form from a Upper Triassic deposit in present-day India. The new taxon, Kranosaura kuttyi gen. et sp. nov., is likely the sister taxon of Triopticus primus based on the presence of a greatly expanded skull roof with a deep dorsal opening (possibly the pineal opening) through the dome, similar cranial sculpturing, and a skull table that is expanded more posterior than the posterior extent of the basioccipital. However, the dome of Kranosaura kuttyi gen. et sp. nov. extends anterodorsally, unlike that of any other archosauromorph. Histological sections and computed tomographic reconstructions through the skull of Kranosaura kuttyi gen. et sp. nov. further reveal the uniqueness of the dome of these early archosauromorphs. Moreover, our integrated analysis further demonstrates that there are many ways to create a dome in Amniota. The presence of 'dome-headed' archosauromorphs at two localities on the western and eastern portions of Pangea suggests that these archosauromorphs were widespread and are likely part of more assemblages than currently recognized.


Subject(s)
Animal Distribution , Dinosaurs/anatomy & histology , Fossils/anatomy & histology , Skull/anatomy & histology , Animals
14.
PeerJ ; 9: e10665, 2021.
Article in English | MEDLINE | ID: mdl-33520458

ABSTRACT

Dramatic early Cenozoic climatic shifts resulted in faunal reorganization on a global scale. Among vertebrates, multiple groups of mammals (e.g., adapiform and omomyiform primates, mesonychids, taeniodonts, dichobunid artiodactyls) are well known from the Western Interior of North America in the warm, greenhouse conditions of the early Eocene, but a dramatic drop in the diversity of these groups, along with the introduction of more dry-tolerant taxa, occurred near the Eocene-Oligocene boundary. Crocodyliforms underwent a striking loss of diversity at this time as well. Pre-Uintan crocodyliform assemblages in the central Western Interior are characterized by multiple taxa, whereas Chadronian assemblages are depauperate with only Alligator prenasalis previously known. Crocodyliform diversity through the intervening Uintan and Duchesnean is not well understood. The middle Eocene Devil's Graveyard Formation (DGF) of southwest Texas provides new data from southern latitudes during that crucial period. A new specimen from the middle member of the DGF (late Uintan-Duchesnean) is the most complete cranial material of an alligatorid known from Paleogene deposits outside the Western Interior. We identify this specimen as a caimanine based on notched descending laminae of the pterygoids posterior to the choanae and long descending processes of the exoccipitals that are in contact with the basioccipital tubera. Unlike Eocaiman cavernensis, the anterior palatine process is rounded rather than quadrangular. The relationships and age of this new taxon support the hypothesis that the modern distribution of caimanines represents a contraction of a more expansive early Cenozoic distribution. We hypothesize that the range of caimanines tracked shifting warm, humid climatic conditions that contracted latitudinally toward the hothouse-icehouse transition later in the Eocene.

15.
Nature ; 588(7838): 445-449, 2020 12.
Article in English | MEDLINE | ID: mdl-33299179

ABSTRACT

Pterosaurs were the first vertebrates to evolve powered flight1 and comprised one of the main evolutionary radiations in terrestrial ecosystems of the Mesozoic era (approximately 252-66 million years ago), but their origin has remained an unresolved enigma in palaeontology since the nineteenth century2-4. These flying reptiles have been hypothesized to be the close relatives of a wide variety of reptilian clades, including dinosaur relatives2-8, and there is still a major morphological gap between those forms and the oldest, unambiguous pterosaurs from the Upper Triassic series. Here, using recent discoveries of well-preserved cranial remains, microcomputed tomography scans of fragile skull bones (jaws, skull roofs and braincases) and reliably associated postcrania, we demonstrate that lagerpetids-a group of cursorial, non-volant dinosaur precursors-are the sister group of pterosaurs, sharing numerous synapomorphies across the entire skeleton. This finding substantially shortens the temporal and morphological gap between the oldest pterosaurs and their closest relatives and simultaneously strengthens the evidence that pterosaurs belong to the avian line of archosaurs. Neuroanatomical features related to the enhanced sensory abilities of pterosaurs9 are already present in lagerpetids, which indicates that these features evolved before flight. Our evidence illuminates the first steps of the assembly of the pterosaur body plan, whose conquest of aerial space represents a remarkable morphofunctional innovation in vertebrate evolution.


Subject(s)
Bone and Bones/anatomy & histology , Dinosaurs/anatomy & histology , Dinosaurs/classification , Fossils , Phylogeny , Animals , Calibration , Skull/anatomy & histology , Time Factors , Wings, Animal/anatomy & histology , X-Ray Microtomography
16.
Article in English | MEDLINE | ID: mdl-33289322

ABSTRACT

Morphology forms the most fundamental level of data in vertebrate palaeontology because it is through interpretations of morphology that taxa are identified, creating the basis for broad evolutionary and palaeobiological hypotheses. Assessing maturity is one of the most basic aspects of morphological interpretation and provides the means to study the evolution of ontogenetic changes, population structure and palaeoecology, life-history strategies, and heterochrony along evolutionary lineages that would otherwise be lost to time. Saurian reptiles (the least-inclusive clade containing Lepidosauria and Archosauria) have remained an incredibly diverse, numerous, and disparate clade through their ~260-million-year history. Because of the great disparity in this group, assessing maturity of saurian reptiles is difficult, fraught with methodological and terminological ambiguity. We compiled a novel database of literature, assembling >900 individual instances of saurian maturity assessment, to examine critically how saurian maturity has been diagnosed. We review the often inexact and inconsistent terminology used in saurian maturity assessment (e.g. 'juvenile', 'mature') and provide routes for better clarity and cross-study coherence. We describe the various methods that have been used to assess maturity in every major saurian group, integrating data from both extant and extinct taxa to give a full account of the current state of the field and providing method-specific pitfalls, best practices, and fruitful directions for future research. We recommend that a new standard subsection, 'Ontogenetic Assessment', be added to the Systematic Palaeontology portions of descriptive studies to provide explicit ontogenetic diagnoses with clear criteria. Because the utility of different ontogenetic criteria is highly subclade dependent among saurians, even for widely used methods (e.g. neurocentral suture fusion), we recommend that phylogenetic context, preferably in the form of a phylogenetic bracket, be used to justify the use of a maturity assessment method. Different methods should be used in conjunction as independent lines of evidence when assessing maturity, instead of an ontogenetic diagnosis resting entirely on a single criterion, which is common in the literature. Critically, there is a need for data from extant taxa with well-represented growth series to be integrated with the fossil record to ground maturity assessments of extinct taxa in well-constrained, empirically tested methods.

17.
Elife ; 82019 12 19.
Article in English | MEDLINE | ID: mdl-31854298

ABSTRACT

A complex pelvic morphology has been discovered in the fossils of one of the largest crocodylians.


Subject(s)
Alligators and Crocodiles/anatomy & histology , Biological Evolution , Fossils/anatomy & histology , Pelvic Bones/anatomy & histology , Animals , Humans , Spine/anatomy & histology
18.
Biol Lett ; 15(2): 20180922, 2019 02 28.
Article in English | MEDLINE | ID: mdl-30958136

ABSTRACT

Crown-group frogs (Anura) originated over 200 Ma according to molecular phylogenetic analyses, though only a few fossils from high latitudes chronicle the first approximately 60 Myr of frog evolution and distribution. We report fossils that represent both the first Late Triassic and the earliest equatorial record of Salientia, the group that includes stem and crown-frogs. These small fossils consist of complete and partial ilia with anteriorly directed, elongate and distally hollow iliac blades. These features of these ilia, including the lack of a prominent dorsal protuberance and a shaft that is much longer than the acetabular region, suggest a closer affinity to crown-group Anura than to Early Triassic stem anurans Triadobatrachus from Madagascar and Czatkobatrachus from Poland, both high-latitude records. The new fossils demonstrate that crown anurans may have been present in the Late Triassic equatorial region of Pangea. Furthermore, the presence of Early Jurassic anurans in the same stratigraphic sequence ( Prosalirus bitis from the Kayenta Formation) suggests that anurans survived the climatic aridification of this region in the early Mesozoic. These fossils highlight the importance of the targeted collection of microfossils and provide further evidence for the presence of crown-group representatives of terrestrial vertebrates prior to the end-Triassic extinction.


Subject(s)
Dinosaurs , Animals , Anura , Arizona , Biological Evolution , Fossils , Madagascar , Phylogeny
20.
J Anat ; 231(6): 886-905, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28836268

ABSTRACT

The sacrum - consisting of those vertebrae that articulate with the ilia - is the exclusive skeletal connection between the hindlimbs and axial skeleton in tetrapods. Therefore, the morphology of this portion of the vertebral column plays a major role in the evolution of terrestrial locomotion. Whereas most extant reptiles only possess the two plesiomorphic sacral vertebrae, additional vertebrae have been incorporated into the sacrum multiple times independently among early-diverging archosaurian (crocodylians + birds) clades. Phytosauria was a diverse, abundant, and cosmopolitan clade of archosauriforms throughout the Late Triassic, but postcrania of this clade are rarely described and few species-level taxonomic placements of phytosaurian postcranial material are available, potentially hampering knowledge of morphological disparity in the postcranial skeleton among phytosaurs. Here, we describe the sacrum of Smilosuchus adamanensis, a phytosaur recovered from the Upper Triassic Chinle Formation of Arizona. This sacrum consists of the two primordial sacral vertebrae, but has a vertebra incorporated from the trunk into the sacrum (= a dorsosacral) and is therefore the first Late Triassic phytosaur and one of the first non-archosaurian archosauromorphs to be described with more than two sacral vertebrae. Our interpretation of this element as a dorsosacral is justified by the lateral extent of the dorsosacral ribs, clear surfaces of articulation between the distal ends of the dorsosacral ribs and the first primordial sacral ribs, and the scar on the medial surface of each ilium for articulation with each dorsosacral rib. Additionally, we provide the first detailed description of the vertebral junction formed by two anteriorly projecting flanges on the first primordial sacral ribs and their corresponding facets on the centrum of the dorsosacral. Computed tomographic (CT) imaging reveals that the two primordial sacrals are not co-ossified and that the dorsosacral morphology of this specimen is not the result of obvious pathology. We place this incorporation of a trunk vertebra into the phytosaurian sacrum in a broader evolutionary context, with this shift in vertebral identity occurring at least seven times independently among Triassic archosauriforms, including at least three times in early crocodylian-line archosaurs and at least four times among bird-line archosaurs. Additionally, anteriorly projecting flanges of sacral ribs which articulate with the anterior-adjacent centrum have evolved several times in archosauriforms, and we interpret 'shared' sacral ribs (= a sacral rib that articulates with two adjacent sacral centra more or less equally) present in some archosaurian clades as a more extreme example of this morphology. In extant taxa the highly conserved Hox gene family plays a central role in the patterning of the axial skeleton, especially vertebral identity; therefore, the independent incorporation of a trunk vertebra into the sacrum across multiple archosauriform lineages may suggest a homologous underlying developmental mechanism for this evolutionary trend.


Subject(s)
Dinosaurs/anatomy & histology , Sacrum/anatomy & histology , Animals , Fossils/anatomy & histology
SELECTION OF CITATIONS
SEARCH DETAIL