Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
BioData Min ; 14(1): 28, 2021 May 03.
Article in English | MEDLINE | ID: mdl-33941233

ABSTRACT

BACKGROUND: Machine learning approaches for predicting disease risk from high-dimensional whole genome sequence (WGS) data often result in unstable models that can be difficult to interpret, limiting the identification of putative sets of biomarkers. Here, we design and validate a graph-based methodology based on maximum flow, which leverages the presence of linkage disequilibrium (LD) to identify stable sets of variants associated with complex multigenic disorders. RESULTS: We apply our method to a previously published logistic regression model trained to identify variants in simple repeat sequences associated with autism spectrum disorder (ASD); this L1-regularized model exhibits high predictive accuracy yet demonstrates great variability in the features selected from over 230,000 possible variants. In order to improve model stability, we extract the variants assigned non-zero weights in each of 5 cross-validation folds and then assemble the five sets of features into a flow network subject to LD constraints. The maximum flow formulation allowed us to identify 55 variants, which we show to be more stable than the features identified by the original classifier. CONCLUSION: Our method allows for the creation of machine learning models that can identify predictive variants. Our results help pave the way towards biomarker-based diagnosis methods for complex genetic disorders.

2.
BioData Min ; 14(1): 27, 2021 Apr 23.
Article in English | MEDLINE | ID: mdl-33892748

ABSTRACT

BACKGROUND: As next-generation sequencing technologies make their way into the clinic, knowledge of their error rates is essential if they are to be used to guide patient care. However, sequencing platforms and variant-calling pipelines are continuously evolving, making it difficult to accurately quantify error rates for the particular combination of assay and software parameters used on each sample. Family data provide a unique opportunity for estimating sequencing error rates since it allows us to observe a fraction of sequencing errors as Mendelian errors in the family, which we can then use to produce genome-wide error estimates for each sample. RESULTS: We introduce a method that uses Mendelian errors in sequencing data to make highly granular per-sample estimates of precision and recall for any set of variant calls, regardless of sequencing platform or calling methodology. We validate the accuracy of our estimates using monozygotic twins, and we use a set of monozygotic quadruplets to show that our predictions closely match the consensus method. We demonstrate our method's versatility by estimating sequencing error rates for whole genome sequencing, whole exome sequencing, and microarray datasets, and we highlight its sensitivity by quantifying performance increases between different versions of the GATK variant-calling pipeline. We then use our method to demonstrate that: 1) Sequencing error rates between samples in the same dataset can vary by over an order of magnitude. 2) Variant calling performance decreases substantially in low-complexity regions of the genome. 3) Variant calling performance in whole exome sequencing data decreases with distance from the nearest target region. 4) Variant calls from lymphoblastoid cell lines can be as accurate as those from whole blood. 5) Whole-genome sequencing can attain microarray-level precision and recall at disease-associated SNV sites. CONCLUSION: Genotype datasets from families are powerful resources that can be used to make fine-grained estimates of sequencing error for any sequencing platform and variant-calling methodology.

3.
BMC Bioinformatics ; 21(1): 356, 2020 Aug 12.
Article in English | MEDLINE | ID: mdl-32787845

ABSTRACT

BACKGROUND: Complex human health conditions with etiological heterogeneity like Autism Spectrum Disorder (ASD) often pose a challenge for traditional genome-wide association study approaches in defining a clear genotype to phenotype model. Coalitional game theory (CGT) is an exciting method that can consider the combinatorial effect of groups of variants working in concert to produce a phenotype. CGT has been applied to associate likely-gene-disrupting variants encoded from whole genome sequence data to ASD; however, this previous approach cannot take into account for prior biological knowledge. Here we extend CGT to incorporate a priori knowledge from biological networks through a game theoretic centrality measure based on Shapley value to rank genes by their relevance-the individual gene's synergistic influence in a gene-to-gene interaction network. Game theoretic centrality extends the notion of Shapley value to the evaluation of a gene's contribution to the overall connectivity of its corresponding node in a biological network. RESULTS: We implemented and applied game theoretic centrality to rank genes on whole genomes from 756 multiplex autism families. Top ranking genes with the highest game theoretic centrality in both the weighted and unweighted approaches were enriched for pathways previously associated with autism, including pathways of the immune system. Four of the selected genes HLA-A, HLA-B, HLA-G, and HLA-DRB1-have also been implicated in ASD and further support the link between ASD and the human leukocyte antigen complex. CONCLUSIONS: Game theoretic centrality can prioritize influential, disease-associated genes within biological networks, and assist in the decoding of polygenic associations to complex disorders like autism.


Subject(s)
Algorithms , Game Theory , Gene Regulatory Networks , Genetic Association Studies , Autism Spectrum Disorder/genetics , Genome-Wide Association Study , Humans , Protein Interaction Mapping , Reproducibility of Results
4.
Biomed Inform Insights ; 11: 1178222619832859, 2019.
Article in English | MEDLINE | ID: mdl-30886520

ABSTRACT

Studies on autism spectrum disorder (ASD) have amassed substantial evidence for the role of genetics in the disease's phenotypic manifestation. A large number of coding and non-coding variants with low penetrance likely act in a combinatorial manner to explain the variable forms of ASD. However, many of these combined interactions, both additive and epistatic, remain undefined. Coalitional game theory (CGT) is an approach that seeks to identify players (individual genetic variants or genes) who tend to improve the performance-association to a disease phenotype of interest-of any coalition (subset of co-occurring genetic variants) they join. This method has been previously applied to boost biologically informative signal from gene expression data and exome sequencing data but remains to be explored in the context of cooperativity among non-coding genomic regions. We describe our extension of previous work, highlighting non-coding chromosomal regions relevant to ASD using CGT on alteration data of 4595 fully sequenced genomes from 756 multiplex families. Genomes were encoded into binary matrices for three types of non-coding regions previously implicated in ASD and separated into ASD (case) and unaffected (control) samples. A player metric, the Shapley value, enabled determination of individual variant contributions in both sets of cohorts. A total of 30 non-coding positions were found to have significantly elevated player scores and likely represent significant contributors to the genetic coordination underlying ASD. Cross-study analyses revealed that a subset of mutated non-coding regions (all of which are in human accelerated regions (HARs)) and related genes are involved in biological pathways or behavioral outcomes known to be affected in autism, suggesting the importance of single nucleotide polymorphisms (SNPs) within HARs in ASD. These findings support the use of CGT in identifying hidden yet influential non-coding players from large-scale genomic data, to better understand the precise underpinnings of complex neurodevelopmental disorders such as autism.

SELECTION OF CITATIONS
SEARCH DETAIL
...