Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Cell Rep ; 43(7): 114395, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38941187

ABSTRACT

Macrophages play crucial roles in organ-specific functions and homeostasis. In the adrenal gland, macrophages closely associate with sinusoidal capillaries in the aldosterone-producing zona glomerulosa. We demonstrate that macrophages preserve capillary specialization and modulate aldosterone secretion. Using macrophage-specific deletion of VEGF-A, single-cell transcriptomics, and functional phenotyping, we found that the loss of VEGF-A depletes PLVAP+ fenestrated endothelial cells in the zona glomerulosa, leading to increased basement membrane collagen IV deposition and subendothelial fibrosis. This results in increased aldosterone secretion, called "haptosecretagogue" signaling. Human aldosterone-producing adenomas also show capillary rarefaction and basement membrane thickening. Mice with myeloid cell-specific VEGF-A deletion exhibit elevated serum aldosterone, hypokalemia, and hypertension, mimicking primary aldosteronism. These findings underscore macrophage-to-endothelial cell signaling as essential for endothelial cell specialization, adrenal gland function, and blood pressure regulation, with broader implications for other endocrine organs.

2.
Life Sci Alliance ; 7(9)2024 Sep.
Article in English | MEDLINE | ID: mdl-38876796

ABSTRACT

Innate lymphoid cells (ILCs) are critical for intestinal adaptation to microenvironmental challenges, and the gut mucosa is characterized by low oxygen. Adaptation to low oxygen is mediated by hypoxia-inducible transcription factors (HIFs), and the HIF-1α subunit shapes an ILC phenotype upon acute colitis that contributes to intestinal damage. However, the impact of HIF signaling in NKp46+ ILCs in the context of repetitive mucosal damage and chronic inflammation, as it typically occurs during inflammatory bowel disease, is unknown. In chronic colitis, mice lacking the HIF-1α isoform in NKp46+ ILCs show a decrease in NKp46+ ILC1s but a concomitant rise in neutrophils and Ly6Chigh macrophages. Single-nucleus RNA sequencing suggests enhanced interaction of mesenchymal cells with other cell compartments in the colon of HIF-1α KO mice and a loss of mucus-producing enterocytes and intestinal stem cells. This was, furthermore, associated with increased bone morphogenetic pathway-integrin signaling, expansion of fibroblast subsets, and intestinal fibrosis. In summary, this suggests that HIF-1α-mediated ILC1 activation, although detrimental upon acute colitis, protects against excessive inflammation and fibrosis during chronic intestinal damage.


Subject(s)
Colitis , Fibrosis , Hypoxia-Inducible Factor 1, alpha Subunit , Lymphocytes , Mice, Knockout , Natural Cytotoxicity Triggering Receptor 1 , Animals , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Natural Cytotoxicity Triggering Receptor 1/metabolism , Natural Cytotoxicity Triggering Receptor 1/genetics , Mice , Colitis/metabolism , Colitis/genetics , Lymphocytes/metabolism , Lymphocytes/immunology , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Inflammation/metabolism , Mice, Inbred C57BL , Chronic Disease , Immunity, Innate , Signal Transduction , Disease Models, Animal , Male , Intestines/pathology , Antigens, Ly
3.
Nat Commun ; 15(1): 683, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38267402

ABSTRACT

Immune cell dysfunction within the tumor microenvironment (TME) undermines the control of cancer progression. Established tumors contain phenotypically distinct, tumor-specific natural killer (NK) cells; however, the temporal dynamics, mechanistic underpinning and functional significance of the NK cell compartment remains incompletely understood. Here, we use photo-labeling, combined with longitudinal transcriptomic and cellular analyses, to interrogate the fate of intratumoral NK cells. We reveal that NK cells rapidly lose effector functions and adopt a distinct phenotypic state with features associated with tissue residency. NK cell depletion from established tumors did not alter tumor growth, indicating that intratumoral NK cells cease to actively contribute to anti-tumor responses. IL-15 administration prevented loss of function and improved tumor control, generating intratumoral NK cells with both tissue-residency characteristics and enhanced effector function. Collectively, our data reveals the fate of NK cells after recruitment into tumors and provides insight into how their function may be revived.


Subject(s)
Internship and Residency , Neoplasms , Humans , Gene Expression Profiling , Killer Cells, Natural , Transcriptome , Tumor Microenvironment
4.
EMBO Rep ; 24(6): e56156, 2023 06 05.
Article in English | MEDLINE | ID: mdl-36987917

ABSTRACT

Natural killer (NK) cells are forced to cope with different oxygen environments even under resting conditions. The adaptation to low oxygen is regulated by oxygen-sensitive transcription factors, the hypoxia-inducible factors (HIFs). The function of HIFs for NK cell activation and metabolic rewiring remains controversial. Activated NK cells are predominantly glycolytic, but the metabolic programs that ensure the maintenance of resting NK cells are enigmatic. By combining in situ metabolomic and transcriptomic analyses in resting murine NK cells, our study defines HIF-1α as a regulator of tryptophan metabolism and cellular nicotinamide adenine dinucleotide (NAD+ ) levels. The HIF-1α/NAD+ axis prevents ROS production during oxidative phosphorylation (OxPhos) and thereby blocks DNA damage and NK cell apoptosis under steady-state conditions. In contrast, in activated NK cells under hypoxia, HIF-1α is required for glycolysis, and forced HIF-1α expression boosts glycolysis and NK cell performance in vitro and in vivo. Our data highlight two distinct pathways by which HIF-1α interferes with NK cell metabolism. While HIF-1α-driven glycolysis is essential for NK cell activation, resting NK cell homeostasis relies on HIF-1α-dependent tryptophan/NAD+ metabolism.


Subject(s)
NAD , Tryptophan , Mice , Animals , Tryptophan/metabolism , Killer Cells, Natural , Glycolysis/genetics , Hypoxia/metabolism , Cell Hypoxia , Oxygen/metabolism , Homeostasis , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
5.
Sci Adv ; 9(2): eadc8825, 2023 01 13.
Article in English | MEDLINE | ID: mdl-36638181

ABSTRACT

Metastatic disease is a major cause of death for patients with melanoma. Melanoma cells can become metastatic not only due to cell-intrinsic plasticity but also due to cancer-induced protumorigenic remodeling of the immune microenvironment. Here, we report that innate immune surveillance by natural killer (NK) cells is bypassed by human melanoma cells expressing the stem cell marker NGFR. Using in vitro and in vivo cytotoxic assays, we show that NGFR protects melanoma cells from NK cell-mediated killing and, furthermore, boosts metastasis formation in a mouse model with adoptively transferred human NK cells. Mechanistically, NGFR leads to down-regulation of NK cell activating ligands and simultaneous up-regulation of the fatty acid stearoyl-coenzyme A desaturase (SCD) in melanoma cells. Notably, pharmacological and small interfering RNA-mediated inhibition of SCD reverted NGFR-induced NK cell evasion in vitro and in vivo. Hence, NGFR orchestrates immune control antagonizing pathways to protect melanoma cells from NK cell clearance, which ultimately favors metastatic disease.


Subject(s)
Antineoplastic Agents , Melanoma , Mice , Animals , Humans , Cell Line, Tumor , Melanoma/pathology , Killer Cells, Natural , Lipids , Tumor Microenvironment , Nerve Tissue Proteins/metabolism , Receptors, Nerve Growth Factor/metabolism
6.
Cell Stem Cell ; 29(10): 1459-1474.e9, 2022 Oct 06.
Article in English | MEDLINE | ID: mdl-36113462

ABSTRACT

Fibrosis is the final path of nearly every form of chronic disease, regardless of the pathogenesis. Upon chronic injury, activated, fibrogenic fibroblasts deposit excess extracellular matrix, and severe tissue fibrosis can occur in virtually any organ. However, antifibrotic therapies that target fibrogenic cells, while sparing homeostatic fibroblasts in healthy tissues, are limited. We tested whether specific immunization against endogenous proteins, strongly expressed in fibrogenic cells but highly restricted in quiescent fibroblasts, can elicit an antigen-specific cytotoxic T cell response to ameliorate organ fibrosis. In silico epitope prediction revealed that activation of the genes Adam12 and Gli1 in profibrotic cells and the resulting "self-peptides" can be exploited for T cell vaccines to ablate fibrogenic cells. We demonstrate the efficacy of a vaccination approach to mount CD8+ T cell responses that reduce fibroblasts and fibrosis in the liver and lungs in mice. These results provide proof of principle for vaccination-based immunotherapies to treat fibrosis.


Subject(s)
Fibroblasts , Lung , Animals , Epitopes/metabolism , Fibroblasts/metabolism , Fibrosis , Immunotherapy , Liver/pathology , Lung/metabolism , Mice , Vaccination , Zinc Finger Protein GLI1/metabolism
7.
Nat Commun ; 13(1): 5399, 2022 09 14.
Article in English | MEDLINE | ID: mdl-36104342

ABSTRACT

Cancer and cardiovascular disease (CVD) share common risk factors such as dyslipidemia, obesity and inflammation. However, the role of pro-atherogenic environment and its associated low-grade inflammation in tumor progression remains underexplored. Here we show that feeding C57BL/6J mice with a non-obesogenic high fat high cholesterol diet (HFHCD) for two weeks to induce mild dyslipidemia, increases the pool of circulating Ly6Chi monocytes available for initial melanoma development, in an IL-1ß-dependent manner. Descendants of circulating myeloid cells, which accumulate in the tumor microenvironment of mice under HFHCD, heighten pro-angiogenic and immunosuppressive activities locally. Limiting myeloid cell accumulation or targeting VEGF-A production by myeloid cells decrease HFHCD-induced tumor growth acceleration. Reverting the HFHCD to a chow diet at the time of tumor implantation protects against tumor growth. Together, these data shed light on cross-disease communication between cardiovascular pathologies and cancer.


Subject(s)
Dyslipidemias , Monocytes , Animals , Carcinogenesis/pathology , Cell Transformation, Neoplastic/pathology , Dyslipidemias/pathology , Inflammation/pathology , Mice , Mice, Inbred C57BL , Monocytes/pathology , Myeloid Cells/pathology , Tumor Microenvironment
8.
Front Immunol ; 13: 858051, 2022.
Article in English | MEDLINE | ID: mdl-35572512

ABSTRACT

Innate Lymphoid Cells (ILCs) are the innate counterpart of adaptive lymphoid T cells. They are key players in the regulation of tissues homeostasis and early inflammatory host responses. ILCs are divided into three groups, and further subdivided into five subsets, that are characterised by distinct transcription factors, surface markers and their cytokine expression profiles. Group 1 ILCs, including natural killer (NK) cells and non-NK cell ILC1s, express T-bet and produce IFN-γ. Group 2 ILCs depend on GATA3 and produce IL-4, IL-5 and IL-13. Group 3 ILCs, composed of ILC3s and Lymphoid Tissue Inducer (LTi) cells, express RORγt and produce IL-17 and IL-22. Even though, the phenotype of each subset is well defined, environmental signals can trigger the interconversion of phenotypes and the plasticity of ILCs, in both mice and humans. Several extrinsic and intrinsic drivers of ILC plasticity have been described. However, the changes in cellular metabolism that underlie ILC plasticity remain largely unexplored. Given that metabolic changes critically affect fate and effector function of several immune cell types, we, here, review recent findings on ILC metabolism and discuss the implications for ILC plasticity.


Subject(s)
Immunity, Innate , Lymphoid Tissue , Animals , Killer Cells, Natural , Mice , T-Lymphocytes, Helper-Inducer
9.
J Exp Med ; 219(2)2022 02 07.
Article in English | MEDLINE | ID: mdl-35024767

ABSTRACT

Gut innate lymphoid cells (ILCs) show remarkable phenotypic diversity, yet microenvironmental factors that drive this plasticity are incompletely understood. The balance between NKp46+, IL-22-producing, group 3 ILCs (ILC3s) and interferon (IFN)-γ-producing group 1 ILCs (ILC1s) contributes to gut homeostasis. The gut mucosa is characterized by physiological hypoxia, and adaptation to low oxygen is mediated by hypoxia-inducible transcription factors (HIFs). However, the impact of HIFs on ILC phenotype and gut homeostasis is not well understood. Mice lacking the HIF-1α isoform in NKp46+ ILCs show a decrease in IFN-γ-expressing, T-bet+, NKp46+ ILC1s and a concomitant increase in IL-22-expressing, RORγt+, NKp46+ ILC3s in the gut mucosa. Single-cell RNA sequencing revealed HIF-1α as a driver of ILC phenotypes, where HIF-1α promotes the ILC1 phenotype by direct up-regulation of T-bet. Loss of HIF-1α in NKp46+ cells prevents ILC3-to-ILC1 conversion, increases the expression of IL-22-inducible genes, and confers protection against intestinal damage. Taken together, our results suggest that HIF-1α shapes the ILC phenotype in the gut.


Subject(s)
Antigens, Ly/metabolism , Cell Plasticity/immunology , Gastrointestinal Tract/physiology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Immunity, Innate , Intraepithelial Lymphocytes/immunology , Intraepithelial Lymphocytes/metabolism , Natural Cytotoxicity Triggering Receptor 1/metabolism , Animals , Biomarkers , Disease Susceptibility , Gene Expression , Gene Expression Profiling , Homeostasis , Immunity, Mucosal , Immunophenotyping , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Lymphocyte Subsets , Mice , Mice, Knockout , Microbiota , Single-Cell Analysis
11.
Nat Commun ; 12(1): 4700, 2021 08 04.
Article in English | MEDLINE | ID: mdl-34349124

ABSTRACT

During skin injury, immune response and repair mechanisms have to be coordinated for rapid skin regeneration and the prevention of microbial infections. Natural Killer (NK) cells infiltrate hypoxic skin lesions and Hypoxia-inducible transcription factors (HIFs) mediate adaptation to low oxygen. We demonstrate that mice lacking the Hypoxia-inducible factor (HIF)-1α isoform in NK cells show impaired release of the cytokines Interferon (IFN)-γ and Granulocyte Macrophage - Colony Stimulating Factor (GM-CSF) as part of a blunted immune response. This accelerates skin angiogenesis and wound healing. Despite rapid wound closure, bactericidal activity and the ability to restrict systemic bacterial infection are impaired. Conversely, forced activation of the HIF pathway supports cytokine release and NK cell-mediated antibacterial defence including direct killing of bacteria by NK cells despite delayed wound closure. Our results identify, HIF-1α in NK cells as a nexus that balances antimicrobial defence versus global repair in the skin.


Subject(s)
Killer Cells, Natural/immunology , Skin/immunology , Skin/microbiology , Wound Healing , Animals , Cell Hypoxia , Cytokines/metabolism , Hypoxia , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Killer Cells, Natural/metabolism , Killer Cells, Natural/pathology , Mice , Neovascularization, Physiologic , Skin/blood supply , Skin Diseases, Bacterial/prevention & control
12.
Cell Metab ; 31(6): 1136-1153.e7, 2020 06 02.
Article in English | MEDLINE | ID: mdl-32492393

ABSTRACT

Endothelial cell (EC)-derived signals contribute to organ regeneration, but angiocrine metabolic communication is not described. We found that EC-specific loss of the glycolytic regulator pfkfb3 reduced ischemic hindlimb revascularization and impaired muscle regeneration. This was caused by the reduced ability of macrophages to adopt a proangiogenic and proregenerative M2-like phenotype. Mechanistically, loss of pfkfb3 reduced lactate secretion by ECs and lowered lactate levels in the ischemic muscle. Addition of lactate to pfkfb3-deficient ECs restored M2-like polarization in an MCT1-dependent fashion. Lactate shuttling by ECs enabled macrophages to promote proliferation and fusion of muscle progenitors. Moreover, VEGF production by lactate-polarized macrophages was increased, resulting in a positive feedback loop that further stimulated angiogenesis. Finally, increasing lactate levels during ischemia rescued macrophage polarization and improved muscle reperfusion and regeneration, whereas macrophage-specific mct1 deletion prevented M2-like polarization. In summary, ECs exploit glycolysis for angiocrine lactate shuttling to steer muscle regeneration from ischemia.


Subject(s)
Endothelial Cells/chemistry , Ischemia/metabolism , Lactates/pharmacology , Macrophages/drug effects , Muscle, Skeletal/drug effects , Animals , Cells, Cultured , Ischemia/pathology , Macrophage Activation/drug effects , Macrophages/metabolism , Mice , Mice, Knockout , Mice, Transgenic , Muscle, Skeletal/metabolism
13.
Physiol Rev ; 100(1): 1-102, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31414610

ABSTRACT

It is generally accepted that metabolism is able to shape the immune response. Only recently we are gaining awareness that the metabolic crosstalk between different tumor compartments strongly contributes to the harsh tumor microenvironment (TME) and ultimately impairs immune cell fitness and effector functions. The major aims of this review are to provide an overview on the immune system in cancer; to position oxygen shortage and metabolic competition as the ground of a restrictive TME and as important players in the anti-tumor immune response; to define how immunotherapies affect hypoxia/oxygen delivery and the metabolic landscape of the tumor; and vice versa, how oxygen and metabolites within the TME impinge on the success of immunotherapies. By analyzing preclinical and clinical endeavors, we will discuss how a metabolic characterization of the TME can identify novel targets and signatures that could be exploited in combination with standard immunotherapies and can help to predict the benefit of new and traditional immunotherapeutic drugs.


Subject(s)
Hypoxia , Immunity , Immunotherapy , Neoplasms/therapy , Animals , Humans , Neoplasms/immunology , Neoplasms/metabolism , Tumor Microenvironment
14.
Nat Commun ; 10(1): 2824, 2019 06 27.
Article in English | MEDLINE | ID: mdl-31249305

ABSTRACT

The fibrogenic response in tissue-resident fibroblasts is determined by the balance between activation and repression signals from the tissue microenvironment. While the molecular pathways by which transforming growth factor-1 (TGF-ß1) activates pro-fibrogenic mechanisms have been extensively studied and are recognized critical during fibrosis development, the factors regulating TGF-ß1 signaling are poorly understood. Here we show that macrophage hypoxia signaling suppresses excessive fibrosis in a heart via oncostatin-m (OSM) secretion. During cardiac remodeling, Ly6Chi monocytes/macrophages accumulate in hypoxic areas through a hypoxia-inducible factor (HIF)-1α dependent manner and suppresses cardiac fibroblast activation. As an underlying molecular mechanism, we identify OSM, part of the interleukin 6 cytokine family, as a HIF-1α target gene, which directly inhibits the TGF-ß1 mediated activation of cardiac fibroblasts through extracellular signal-regulated kinase 1/2-dependent phosphorylation of the SMAD linker region. These results demonstrate that macrophage hypoxia signaling regulates fibroblast activation through OSM secretion in vivo.


Subject(s)
Fibrosis/metabolism , Hypoxia/metabolism , Macrophages/metabolism , Oncostatin M/metabolism , Animals , Antigens, Ly/genetics , Antigens, Ly/metabolism , Female , Fibroblasts/metabolism , Fibrosis/genetics , Fibrosis/pathology , Hypoxia/genetics , Hypoxia/pathology , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Male , Mice , Mice, Inbred C57BL , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/genetics , Mitogen-Activated Protein Kinase 3/metabolism , Oncostatin M/genetics , Phosphorylation , Signal Transduction , Smad Proteins/genetics , Smad Proteins/metabolism , Transforming Growth Factor beta1/metabolism
15.
Int J Mol Sci ; 20(2)2019 Jan 20.
Article in English | MEDLINE | ID: mdl-30669540

ABSTRACT

Immune system deterioration in space represents a major risk, which has to be mitigated for exploration-class missions into the solar system. Altered gravitational forces have been shown to regulate adaptation processes in cells of the immune system, which are important for appropriate risk management, monitoring and development of countermeasures. T lymphocytes and cells of the monocyte-macrophage system are highly migratory cell types that frequently encounter a wide range of oxygen tensions in human tissues and in hypoxic areas, even under homeostatic conditions. Hypoxia-inducible factor 1 and 2 (HIF's) might have an important role in activation of T cells and cells of the monocyte-macrophages system. Thus, we investigated the regulation of HIF-dependent and, therefore, hypoxia-signaling systems in both cell types in altered gravity and performed transcript and protein analysis from parabolic flight and suborbital ballistic rocket experiments. We found that HIF-1α and HIF-1-dependent transcripts were differently regulated in altered gravity, whereas HIF-1α-dependent gene expression adapted after 5 min microgravity. Inter-platform comparisons identified PDK1 as highly responsive to gravitational changes in human U937 myelomonocytic cells and in Jurkat T cells. We suggest HIF-1 as a potential pharmacological target for counteracting immune system deterioration during space flight.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Macrophages/metabolism , Monocytes/metabolism , T-Lymphocytes/metabolism , Cell Line , Gene Expression Regulation , Gravity, Altered , Humans , Jurkat Cells , Lymphocyte Activation , Macrophage Activation , Protein Serine-Threonine Kinases/genetics , Pyruvate Dehydrogenase Acetyl-Transferring Kinase , Signal Transduction , Weightlessness
16.
Biomedicines ; 6(2)2018 May 15.
Article in English | MEDLINE | ID: mdl-29762526

ABSTRACT

Hypoxia is a hallmark of inflamed, infected or damaged tissue, and the adaptation to inadequate tissue oxygenation is regulated by hypoxia-inducible factors (HIFs). HIFs are key mediators of the cellular response to hypoxia, but they are also associated with pathological stress such as inflammation, bacteriological infection or cancer. In addition, HIFs are central regulators of many innate and adaptive immunological functions, including migration, antigen presentation, production of cytokines and antimicrobial peptides, phagocytosis as well as cellular metabolic reprogramming. A characteristic feature of immune cells is their ability to infiltrate and operate in tissues with low level of nutrients and oxygen. The objective of this article is to discuss the role of HIFs in the function of innate and adaptive immune cells in hypoxia, with a focus on how hypoxia modulates immunometabolism.

17.
Nat Commun ; 8(1): 1597, 2017 11 17.
Article in English | MEDLINE | ID: mdl-29150606

ABSTRACT

Productive angiogenesis, a prerequisite for tumour growth, depends on the balanced release of angiogenic and angiostatic factors by different cell types within hypoxic tumours. Natural killer (NK) cells kill cancer cells and infiltrate hypoxic tumour areas. Cellular adaptation to low oxygen is mediated by Hypoxia-inducible factors (HIFs). We found that deletion of HIF-1α in NK cells inhibited tumour growth despite impaired tumour cell killing. Tumours developing in these conditions were characterised by a high-density network of immature vessels, severe haemorrhage, increased hypoxia, and facilitated metastasis due to non-productive angiogenesis. Loss of HIF-1α in NK cells increased the bioavailability of the major angiogenic cytokine vascular endothelial growth factor (VEGF) by decreasing the infiltration of NK cells that express angiostatic soluble VEGFR-1. In summary, this identifies the hypoxic response in NK cells as an inhibitor of VEGF-driven angiogenesis, yet, this promotes tumour growth by allowing the formation of functionally improved vessels.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit/deficiency , Killer Cells, Natural/metabolism , Neoplasms, Experimental/metabolism , Neovascularization, Pathologic/metabolism , Animals , Cell Hypoxia , Cell Line, Tumor , Cells, Cultured , Hypoxia , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Mice, Inbred C57BL , Mice, Knockout , Neoplasms, Experimental/blood supply , Neoplasms, Experimental/genetics , Neovascularization, Pathologic/genetics , Vascular Endothelial Growth Factor A/deficiency , Vascular Endothelial Growth Factor A/genetics
18.
EMBO Mol Med ; 9(12): 1629-1645, 2017 12.
Article in English | MEDLINE | ID: mdl-29038312

ABSTRACT

Glioma growth and progression are characterized by abundant development of blood vessels that are highly aberrant and poorly functional, with detrimental consequences for drug delivery efficacy. The mechanisms driving this vessel dysmorphia during tumor progression are poorly understood. Using longitudinal intravital imaging in a mouse glioma model, we identify that dynamic sprouting and functional morphogenesis of a highly branched vessel network characterize the initial tumor growth, dramatically changing to vessel expansion, leakage, and loss of branching complexity in the later stages. This vascular phenotype transition was accompanied by recruitment of predominantly pro-inflammatory M1-like macrophages in the early stages, followed by in situ repolarization to M2-like macrophages, which produced VEGF-A and relocate to perivascular areas. A similar enrichment and perivascular accumulation of M2 versus M1 macrophages correlated with vessel dilation and malignancy in human glioma samples of different WHO malignancy grade. Targeting macrophages using anti-CSF1 treatment restored normal blood vessel patterning and function. Combination treatment with chemotherapy showed survival benefit, suggesting that targeting macrophages as the key driver of blood vessel dysmorphia in glioma progression presents opportunities to improve efficacy of chemotherapeutic agents. We propose that vessel dysfunction is not simply a general feature of tumor vessel formation, but rather an emergent property resulting from a dynamic and functional reorganization of the tumor stroma and its angiogenic influences.


Subject(s)
Blood Vessels/pathology , Brain Neoplasms/pathology , Glioma/pathology , Animals , Antibodies, Monoclonal/therapeutic use , Antineoplastic Agents, Alkylating/therapeutic use , Blood Vessels/abnormalities , Brain Neoplasms/blood supply , Brain Neoplasms/drug therapy , Brain Neoplasms/mortality , Cell Line, Tumor , Dacarbazine/analogs & derivatives , Dacarbazine/therapeutic use , Disease Models, Animal , Female , Glioma/blood supply , Glioma/drug therapy , Glioma/mortality , Humans , Macrophage Colony-Stimulating Factor/immunology , Macrophages/cytology , Macrophages/immunology , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neovascularization, Pathologic/pathology , Phenotype , Proto-Oncogene Proteins c-sis/genetics , Temozolomide , Vascular Endothelial Growth Factor A/metabolism
20.
Oncotarget ; 8(9): 15085-15100, 2017 Feb 28.
Article in English | MEDLINE | ID: mdl-28118605

ABSTRACT

We have recently shown that targeting Vascular Endothelial Growth Factor (VEGF) specifically in scar-infiltrating myeloid cells prevented remodeling of the sinusoidal vasculature and abrogated the resolution of murine liver fibrosis, thereby unmasking an unanticipated link between angiogenesis and resolution of fibrosis. In a gain of function approach, we wanted to test the impact of VEGF overexpression in myeloid cells on fibrolysis. We observe that genetic inactivation of the von Hippel Lindau protein (VHL), a negative regulator of Hypoxia-inducible factors (HIF) in myeloid cells, leads to increased VEGF expression and most importantly, accelerated matrix degradation and reduced myofibroblast numbers after CCl4 challenge. This is associated with enhanced expression of MMP-2 and -14 as well as lower expression of TIMP-2 in liver endothelial cells. In addition, we report increased expression of MMP-13 in scar-associated macrophages as well as improved liver regeneration upon ablation of VHL in myeloid cells. Finally, therapeutic infusion of macrophages nulli-zygous for VHL or treated with the pharmacologic hydroxylase inhibitor and HIF-inducer Dimethyloxalylglycine (DMOG) accelerates resolution of fibrosis. Hence, boosting the HIF-VEGF signaling axis in macrophages represents a promising therapeutic avenue for the treatment of liver fibrosis.


Subject(s)
Cell Hypoxia/physiology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Liver Cirrhosis/prevention & control , Liver Regeneration/physiology , Myeloid Cells/physiology , Von Hippel-Lindau Tumor Suppressor Protein/antagonists & inhibitors , Animals , Apoptosis , Cell Proliferation , Cells, Cultured , Female , Gene Expression Regulation , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Macrophages/cytology , Macrophages/metabolism , Male , Matrix Metalloproteinase 14/genetics , Matrix Metalloproteinase 14/metabolism , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 2/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Von Hippel-Lindau Tumor Suppressor Protein/genetics , Von Hippel-Lindau Tumor Suppressor Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...