Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
J Chem Theory Comput ; 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39192710

ABSTRACT

This article presents an optimized algorithm and implementation for calculating resolution-of-the-identity Hartree-Fock (RI-HF) energies and analytic gradients using multiple graphics processing units (GPUs). The algorithm is especially designed for high throughput ab initio molecular dynamics simulations of small and medium size molecules (10-100 atoms). Key innovations of this work include the exploitation of multi-GPU parallelism and a workload balancing scheme that efficiently distributes computational tasks among GPUs. Our implementation also employs techniques for symmetry utilization, integral screening, and leveraging sparsity to optimize memory usage. Computational results show that the implementation achieves significant performance improvements, including over 3 × speedups in single GPU AIMD throughput compared to previous GPU-accelerated RI-HF and traditional HF methods. Furthermore, utilizing multiple GPUs can provide superlinear speedup when the additional aggregate GPU memory allows for the storage of decompressed three-center integrals.

2.
J Chem Theory Comput ; 20(6): 2505-2519, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38456899

ABSTRACT

This article presents a novel algorithm for the calculation of analytic energy gradients from second-order Møller-Plesset perturbation theory within the Resolution-of-the-Identity approximation (RI-MP2), which is designed to achieve high performance on clusters with multiple graphical processing units (GPUs). The algorithm uses GPUs for all major steps of the calculation, including integral generation, formation of all required intermediate tensors, solution of the Z-vector equation and gradient accumulation. The implementation in the EXtreme Scale Electronic Structure System (EXESS) software package includes a tailored, highly efficient, multistream scheduling system to hide CPU-GPU data transfer latencies and allows nodes with 8 A100 GPUs to operate at over 80% of theoretical peak floating-point performance. Comparative performance analysis shows a significant reduction in computational time relative to traditional multicore CPU-based methods, with our approach achieving up to a 95-fold speedup over the single-node performance of established software such as Q-Chem and ORCA. Additionally, we demonstrate that pairing our implementation with the molecular fragmentation framework in EXESS can drastically lower the computational scaling of RI-MP2 gradient calculations from quintic to subquadratic, enabling further substantial savings in runtime while retaining high numerical accuracy in the resulting gradients.

3.
J Chem Phys ; 159(4)2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37497819

ABSTRACT

Electronic structure calculations have the potential to predict key matter transformations for applications of strategic technological importance, from drug discovery to material science and catalysis. However, a predictive physicochemical characterization of these processes often requires accurate quantum chemical modeling of complex molecular systems with hundreds to thousands of atoms. Due to the computationally demanding nature of electronic structure calculations and the complexity of modern high-performance computing hardware, quantum chemistry software has historically failed to operate at such large molecular scales with accuracy and speed that are useful in practice. In this paper, novel algorithms and software are presented that enable extreme-scale quantum chemistry capabilities with particular emphasis on exascale calculations. This includes the development and application of the multi-Graphics Processing Unit (GPU) library LibCChem 2.0 as part of the General Atomic and Molecular Electronic Structure System package and of the standalone Extreme-scale Electronic Structure System (EXESS), designed from the ground up for scaling on thousands of GPUs to perform high-performance accurate quantum chemistry calculations at unprecedented speed and molecular scales. Among various results, we report that the EXESS implementation enables Hartree-Fock/cc-pVDZ plus RI-MP2/cc-pVDZ/cc-pVDZ-RIFIT calculations on an ionic liquid system with 623 016 electrons and 146 592 atoms in less than 45 min using 27 600 GPUs on the Summit supercomputer with a 94.6% parallel efficiency.

4.
J Phys Condens Matter ; 33(32)2021 Jun 24.
Article in English | MEDLINE | ID: mdl-34077917

ABSTRACT

Classical simulations of materials and nanoparticles have the advantage of speed and scalability but at the cost of precision and electronic properties, while electronic structure simulations have the advantage of accuracy and transferability but are typically limited to small and simple systems due to the increased computational complexity. Machine learning can be used to bridge this gap by providing correction terms that deliver electronic structure results based on classical simulations, to retain the best of both worlds. In this study we train an artificial neural network (ANN) as a general ansatz to predict a correction of the total energy of arbitrary gold nanoparticles based on general (material agnostic) features, and a limited set of structures simulated with an embedded atom potential and the self-consistent charge density functional tight binding method. We find that an accurate model with an overall precision of 14 eV or 8.6% can be found using a diverse range of particles and a large number of manually generated features which were then reduced using automatic data-driven approach to reduce evaluation bias. We found the ANN reduces to a linear relationship if a suitable subset of important features are identified prior to training, and that the prediction can be improved by classifying the nanoparticles into kinetically limited and thermodynamically limited subsets based prior to training the ANN corrections. The results demonstrate the potential for machine learning to enhance classical molecular dynamics simulations without adding significant computational complexity, and provides methodology that could be used to predict other electronic properties which cannot be calculated solely using classical simulations.

SELECTION OF CITATIONS
SEARCH DETAIL